[Docs] [txt|pdf] [draft-ietf-frne...] [Tracker] [Diff1] [Diff2]
PROPOSED STANDARD
Network Working Group K. Rehbehn
Request for Comments: 2954 Megisto Systems
Obsoletes: 1604 D. Fowler
Category: Standards Track Syndesis Limited
October 2000
Definitions of Managed Objects
for Frame Relay Service
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2000). All Rights Reserved.
Abstract
This memo defines an extension to the Management Information Base
(MIB) for use with network management protocols in Transmission
Control Protocol/Internet Protocol-based (TCP/IP) internets. In
particular, it defines objects for managing the frame relay service.
This document obsoletes RFC 1604.
Table of Contents
1 The SNMP Management Framework ................................ 2
2 Overview ..................................................... 3
2.1 Scope of MIB ............................................... 3
2.2 Transiting Multiple Frame Relay Networks ................... 5
2.3 Access Control ............................................. 5
2.4 Frame Relay Service MIB Terminology ........................ 6
2.5 Relation to Other MIBs ..................................... 8
2.5.1 System Group ............................................. 8
2.5.2 Interfaces Table (ifTable, ifXtable) ..................... 8
2.5.3 Stack Table for DS1/E1 Environment ....................... 12
2.5.4 Stack Table for V.35 Environments ........................ 14
2.5.5 The Frame Relay/ATM PVC Service Interworking MIB ......... 14
2.6 Textual Convention Change .................................. 15
3 Object Definitions ........................................... 15
3.1 The Frame Relay Service Logical Port ....................... 17
Rehbehn & Fowler Standards Track [Page 1]
RFC 2954 Frame Relay Service MIB October 2000
3.2 Frame Relay Management VC Signaling ........................ 22
3.3 Frame Relay PVC End-Points ................................. 32
3.4 Frame Relay PVC Connections ................................ 45
3.5 Frame Relay Accounting ..................................... 53
3.6 Frame Relay Network Service Notifications .................. 56
3.7 Conformance Information .................................... 57
4 Acknowledgments .............................................. 67
5 References ................................................... 67
6 Security Considerations ...................................... 69
7 Authors' Addresses ........................................... 70
APPENDIX A Update Information .................................. 71
Intellectual Property Rights ................................... 75
Full Copyright Statement ....................................... 76
1. The SNMP Management Framework
The SNMP Management Framework presently consists of five major
components:
o An overall architecture, described in RFC 2571 [1].
o Mechanisms for describing and naming objects and events for the
purpose of management. The first version of this Structure of
Management Information (SMI) is called SMIv1 and described in STD
16, RFC 1155 [2], STD 16, RFC 1212 [3] and RFC 1215 [4]. The
second version, called SMIv2, is described in STD 58, RFC 2578
[5], STD 58, RFC 2579 [6] and STD 58, RFC 2580 [7].
o Message protocols for transferring management information. The
first version of the SNMP message protocol is called SNMPv1 and
described in STD 15, RFC 1157 [8]. A second version of the SNMP
message protocol, which is not an Internet standards track
protocol, is called SNMPv2c and described in RFC 1901 [9] and RFC
1906 [10]. The third version of the message protocol is called
SNMPv3 and described in RFC 1906 [10], RFC 2572 [11] and RFC 2574
[12].
o Protocol operations for accessing management information. The
first set of protocol operations and associated PDU formats is
described in STD 15, RFC 1157 [8]. A second set of protocol
operations and associated PDU formats is described in RFC 1905
[13].
o A set of fundamental applications described in RFC 2573 [14] and
the view-based access control mechanism described in RFC 2575
[15].
Rehbehn & Fowler Standards Track [Page 2]
RFC 2954 Frame Relay Service MIB October 2000
A more detailed introduction to the current SNMP Management Framework
can be found in RFC 2570 [16].
Managed objects are accessed via a virtual information store, termed
the Management Information Base or MIB. Objects in the MIB are
defined using the mechanisms defined in the SMI.
This memo specifies a MIB module that is compliant to the SMIv2. A
MIB conforming to the SMIv1 can be produced through the appropriate
translations. The resulting translated MIB must be semantically
equivalent, except where objects or events are omitted because no
translation is possible (use of Counter64). Some machine readable
information in SMIv2 will be converted into textual descriptions in
SMIv1 during the translation process. However, this loss of machine
readable information is not considered to change the semantics of the
MIB.
2. Overview
These objects are used to manage a frame relay Service. At present,
this applies to the following value of the ifType variable in the
IF-MIB [26]:
frameRelayService (44)
This section provides an overview and background of how to use this
MIB and other potential MIBs to manage a frame relay service.
2.1. Scope of MIB
The Frame Relay Service MIB supports Customer Network Management
(CNM) of a frame relay network service. Through the use of this and
other related MIBs, a frame relay service customer's NMS can monitor
the customer's UNI/NNI logical ports and PVCs. It provides customers
with access to configuration data, performance monitoring
information, and fault detection for the delivered frame relay
service. As an option, an SNMP agent supporting the Frame Relay
Service MIB may allow customer-initiated PVC management operations
such as creation, deletion, modification, activation, and
deactivation of individual PVCs. However, internal aspects of the
network (e.g., switching elements, line cards, and network routing
tables) are beyond the scope of this MIB.
The Frame Relay Service MIB models all interfaces and PVCs delivered
by a frame relay service within a single virtual SNMP system for the
purpose of comprehensively representing the customer's frame relay
service. The customer's interfaces and PVCs may physically exist on
one or more devices within the network topology. An SNMP agent
Rehbehn & Fowler Standards Track [Page 3]
RFC 2954 Frame Relay Service MIB October 2000
providing support for the Frame Relay Service MIB as well as other
appropriate MIBs to model a single virtual frame relay network
service is referred to as a Frame Relay Service (FRS) agent.
Internal communication mechanisms between the FRS agent and
individual devices within the frame relay network delivering the
service are implementation specific and beyond the scope of this MIB.
The customer's NMS will typically access the SNMP agent implementing
the Frame Relay Service MIB over a frame relay permanent virtual
connection (PVC). SNMP access over a frame relay PVC is achieved
through the use of SNMP over UDP over IP encapsulated in Frame Relay
according to STD 55, RFC2427 and ITU X.36 Annex D [23]. Alternate
access mechanisms and SNMP agent implementations are possible.
This MIB will NOT be implemented on user equipment (e.g., DTE). Such
devices are managed using the Frame Relay DTE MIB (RFC2115[18]).
However, concentrators may use the Frame Relay Service MIB instead of
the Frame Relay DTE MIB.
This MIB does not define managed objects for the physical layer.
Existing physical layer MIBs (e.g., DS1 MIB) and Interface MIB will
be used as needed in FRS Agent implementations.
This MIB supports frame relay PVCs. This MIB may be extended at a
later time to handle frame relay SVCs.
A switch implementation may support this MIB for the purpose of
configuration and control of the frame relay service beyond the scope
of traditional customer network management applications. A number of
objects (e.g. frLportTypeAdmin) support administrative actions that
impact the operation of frame relay switch equipment in the network.
This is reflected in the differences between the two MIB compliance
modules:
o the frame relay service compliance module
(frnetservCompliance), and
o the frame relay switch compliance module
(frnetSwitchCompliance).
The frame relay service compliance module does not support the
administrative control objects used for switch management.
Rehbehn & Fowler Standards Track [Page 4]
RFC 2954 Frame Relay Service MIB October 2000
2.2. Transiting Multiple Frame Relay Networks
This MIB is only used to manage a single frame relay service offering
from one network service provider. Therefore, if a customer PVC
traverses multiple networks, then the customer must poll a different
FRS agent within each frame relay network to retrieve the end-to-end
view of service.
Figure 1 illustrates a customer ("User B") NMS accessing FRS agents
in three different frame relay networks (I, J, and K).
+-------------------------------------+
| Customer Network Management Station |
| (SNMP based) |
+-------------------------------------+
^ ^ ^
| | |
| | |
UNI | NNI | NNI | UNI
| ^ | ^ | ^
| +-----------+ | +-----------+ | +-----------+ |
| | | | | | | | | |
Originating | | FR | | | FR | | | FR | |Terminating
+--------+ | | Network I | | | Network J | | | Network K | | +--------+
| | | | | | | | | | | | | |
| |---| |---| |---| |---| User B |
| | | | | | | | | | | | | |
| //////////////////////////////////////////////////////////// |
| | | | | | | | | | | | | |
+--------+ | +-----------+ | +-----------+ | +-----------+ | +--------+
| | | |
| | | |
| PVC Segment 1 | PVC Segment 2 | PVC Segment 3 |
|<------------->|<------------->|<------------->|
| |
| Multi-network PVC |
|<--------------------------------------------->|
| NNI = Network-to Network Interface |
UNI = User-to-Network Interface
Figure 1, Multi-network PVC
2.3. Access Control
A frame relay network is shared amongst many frame relay subscribers.
Each subscriber will only have access to their information (e.g.,
information with respect to their interfaces and PVCs). The FRS agent
should provide instance level granularity for MIB views.
Rehbehn & Fowler Standards Track [Page 5]
RFC 2954 Frame Relay Service MIB October 2000
2.4. Frame Relay Service MIB Terminology
Access Channel - An access channel generically refers to the DS1/E1
or DS3/E3-based UNI access channel or NNI access channel across which
frame relay data transits. An access channel is the access pathway
for a single stream of user data.
Within a given DS1 line, an access channel can denote any one of the
following:
o Unchannelized DS1 - the entire DS1 line is considered an access
channel. Each access channel is comprised of 24 DS0 time slots.
o Channelized DS1 - an access channel is any one of 24 channels.
Each access channel is comprised of a single DS0 time slot.
o Fractional DS1 - an access channel is a grouping of NxDS0 time
slots (NX56/64 Kbps, where N = 1-23 DS0 Time slots per Fractional
DS1 Access Channel) that may be assigned in consecutive or
non-consecutive order.
Within a given E1 line, a channel can denote any one of the following:
o Unchannelized E1 - the entire E1 line is considered a single
access channel. Each access channel is comprised of 31 E1 time
slots.
o Channelized E1 - an access channel is any one of 31 channels.
Each access channel is comprised of a single E1 time slot.
o Fractional E1 - an access channel is a grouping of N E1 time
slots (NX64 Kbps, where N = 1-30 E1 time slots per FE1 access
channel) that may be assigned in consecutive or non-consecutive
order.
Within a given unformatted line, the entire unformatted line is
considered an access channel. Examples include RS-232, V.35, V.36 and
X.21 (non-switched), and unframed E1 (G.703 without G.704).
Access Rate - The data rate of the access channel, expressed in
bits/second. The speed of the user access channel determines how
rapidly the end user can inject data into the network.
Bc - The Committed Burst Size (Bc) is the maximum amount of
subscriber data (expressed in bits) that the network agrees to
transfer, under normal conditions, during a time interval Tc.
Rehbehn & Fowler Standards Track [Page 6]
RFC 2954 Frame Relay Service MIB October 2000
Be - The Excess Burst Size (Be) is the maximum amount of subscriber
data (expressed in bits) in excess of Bc that the network will
attempt to deliver during the time interval Tc. This data (Be) is
delivered in general with a lower probability than Bc.
CIR - The Committed Information Rate (CIR) is the subscriber data
rate (expressed in bits/second) that the network commits to deliver
under normal network conditions. CIR is averaged over the time
interval Tc (CIR = Bc/Tc).
DLCI - Data Link Connection Identifier
Logical Port - This term is used to model the frame relay "interface"
on a device.
NNI - Network to Network Interface
Permanent Virtual Connection (PVC) - A virtual connection that has
its end-points and bearer capabilities defined at subscription time.
Time slot (E1) - An octet within the 256-bit information field in
each E1 frame is defined as a time slot. Time slots are position
sensitive within the 256-bit information field. Fractional E1 service
is provided in contiguous or non-contiguous time slot increments.
Time slot (DS0) - An octet within the 192-bit information field in
each DS1 frame is defined as a time slot. Time slots are position
sensitive within the 192-bit information field. Fractional DS1
service is provided in contiguous or non-contiguous time slot
increments.
UNI - User to Network Interface
N391 - Full status (status of all PVCs) polling counter
N392 - Error threshold
N393 - Monitored events count
T391 - Link integrity verification polling timer
T392 - Polling verification timer
nT3 - Status enquiry timer
nN3 - Maximum status enquiry counter
Rehbehn & Fowler Standards Track [Page 7]
RFC 2954 Frame Relay Service MIB October 2000
2.5. Relation to Other MIBs
2.5.1. System Group
Use the System Group of the SNMPv2-MIB [27] to describe the Frame
Relay Service (FRS) agent. The FRS agent may be monitoring many
frame relay devices in one network. The System Group does not
describe frame relay devices monitored by the FRS agent.
sysDescr: ASCII string describing the FRS agent.
Can be up to 255 characters long. This field is
generally used to indicate the network providers
identification and type of service offered.
sysObjectID: Unique OBJECT IDENTIFIER (OID) for the
FRS agent.
sysUpTime: Clock in the FRS agent; TimeTicks
in 1/100s of a second. Elapsed type since
the FRS agent came on line.
sysContact: Contact for the FRS agent.
ASCII string of up to 255 characters.
sysName: Domain name of the FRS agent, for example,
acme.com
sysLocation: Location of the FRS agent.
ASCII string of up to 255 characters.
sysServices: Services of the managed device. The value "2",
which implies that
the frame relay network is providing
a subnetwork level service, is recommended.
2.5.2. Interfaces Table (ifTable, ifXtable)
This specifies how the Interfaces Group defined in the IF MIB [26]
shall be used for the management of frame relay based interfaces, and
in conjunction with the Frame Relay Service MIB module. This memo
assumes the interpretation of the evolution of the Interfaces group
to be in accordance with: "The interfaces table (ifTable) contains
information on the managed resource's interfaces. Each sub-layer
below the internetwork layer of a network interface is considered an
interface." Thus, the ifTable allows the following frame relay-based
interfaces to be represented as table entries:
Rehbehn & Fowler Standards Track [Page 8]
RFC 2954 Frame Relay Service MIB October 2000
- Frame relay interfaces in equipment (e.g., switches, routers or
networks) supporting frame relay. This level is concerned with
generic frame counts and not with individual virtual connections.
In accordance with the guidelines of ifTable, frame counts per
virtual connection are not covered by ifTable, and are considered
interface specific and covered in the Frame Relay Service MIB module.
In order to interrelate the ifEntries properly, the Interfaces Stack
Group shall be supported.
Some specific interpretations of ifTable for frame relay follow.
Object Use for the generic Frame Relay layer
====== =============================================
ifIndex Each frame relay port is represented by an
ifEntry.
ifDescr Description of the frame relay interface.
ASCII string describing the UNI/NNI logical
port. Can be up to 255 characters long.
ifType The value allocated for Frame Relay Service
is equal to 44.
ifMtu Set to maximum frame size in octets for this
frame relay logical port.
ifSpeed Peak bandwidth in bits per second available
for use. This could be the speed of the
logical port and not the access rate. Actual
user information transfer rate (i.e., access
rate) of the UNI or NNI logical port in bits
per second (this is not the clocking speed).
For example, it is 1,536,000 bits per second
for a DS1-based UNI/NNI logical port and
1,984,000 bits per second for an E1-based
UNI/NNI logical port.
ifPhysAddress The primary address for this logical port
assigned by the frame relay interface
provider. An octet string of zero length if
no address is used for this logical port.
ifAdminStatus The desired administrative status of the
frame relay logical port.
Rehbehn & Fowler Standards Track [Page 9]
RFC 2954 Frame Relay Service MIB October 2000
ifOperStatus The current operational status of the Frame
Relay UNI or NNI logical port.
ifLastChange The value of sysUptime at the last
re-initialization of the logical port. The
value of sysUpTime at the time the logical
port entered its current operational state.
If the current state was entered prior to the
last re-initialization of the local network
management subsystem, then this object
contains a zero value.
ifInOctets The number of received octets. This counter
only counts octets from the beginning of the
frame relay header field to the end of user
data.
ifInUcastPkts The number of received unerrored, unicast
frames.
ifInDiscards The number of received frames discarded.
Specifically, frames discarded due to ingress
buffer congestion and traffic policing.
ifInErrors The number of received frames that are
discarded because of an error. Specifically,
frames that are too long or too short, frames
that are not a multiple of 8 bits in length,
frames with an invalid or unrecognized DLCI,
frames with an abort sequence, frames with
improper flag delimitation, and frame that
fail FCS.
ifInUnknownProtos The number of packets discarded because of an
unknown or unsupported protocol. For Frame
Relay Service interfaces, this counter will
always be zero.
ifOutOctets The number of transmitted octets. This
counter only counts octets from the beginning
of the frame relay header field to the end of
user data.
ifOutUcastpkts The number of unerrored, unicast frames sent.
ifOutDiscards The number of frames discarded in the egress
direction. Possible reasons are as follows:
policing, congestion.
Rehbehn & Fowler Standards Track [Page 10]
RFC 2954 Frame Relay Service MIB October 2000
ifOutErrors The number of frames discarded in the egress
direction because of an error. Specifically,
frames that are aborted due to a transmitter
underrun.
ifName This variable is not applicable for Frame
Relay Service interfaces, therefore, this
variable contains a zero-length string.
ifInMulticastPkts The number of received unerrored, multicast
frames.
ifInBroadcastPkts This variable is not applicable for Frame
Relay Service interfaces, therefore, this
counter is always zero.
ifOutMulticastPkts The number of sent unerrored, multicast
frames.
ifOutBroadcastPkts This variable is not applicable for Frame
Relay Service interfaces, therefore, this
counter is always zero.
ifHCInOctets Only used for DS3-based (and greater) Frame
Relay logical ports. The number of received
octets. This counter only counts octets
from the beginning of the frame relay header
field to the end of user data.
ifHCOutOctets Only used for DS3-based (and greater) Frame
Relay logical ports. The number of
transmitted octets. This counter only counts
octets from the beginning of the frame relay
header field to the end of user data.
ifLinkUpDownTrapEnable Set to true(1). It is recommended that the
underlying physical layer notifications be
disabled since both are not required.
Notifications are enabled at the frame relay
service layer specifically because PVC
notifications are not to be sent if the frame
relay interface fails. Without a
linkUp/linkDown notification, the management
station would receive no notification of the
failure.
Rehbehn & Fowler Standards Track [Page 11]
RFC 2954 Frame Relay Service MIB October 2000
ifHighSpeed Set to the user data rate of the frame relay
logical port in millions of bits per second.
If the user data rate is less than 1 Mbps,
then this value is zero.
ifPromiscuousMode Set to false(2).
ifConnectorPresent Set to false(2).
Frame relay network service interfaces support the Interface Stack
Group. Frame relay network service interfaces do not support any
other groups or objects in the Interfaces group of the IF MIB.
2.5.3. Stack Table for DS1/E1 Environment
This section describes by example how to use ifStackTable to
represent the relationship of frame relay service to ds0 and
ds0Bundles with ds1 interfaces [20].
Example: A frame relay service is being carried on 4 ds0s of a ds1.
+---------------------+
| Frame Relay Service |
+---------------------+
|
+---------------------+
| ds0Bundle |
+---------------------+
| | | |
+---+ +---+ +---+ +---+
|ds0| |ds0| |ds0| |ds0|
+---+ +---+ +---+ +---+
| | | |
+---------------------+
| ds1 |
+---------------------+
The assignment of the index values could for example be:
ifIndex Description
1 FrameRelayService (type 44)
2 ds0Bundle (type 82)
3 ds0 #1 (type 81)
4 ds0 #2 (type 81)
5 ds0 #3 (type 81)
6 ds0 #4 (type 81)
7 ds1 (type 18)
Rehbehn & Fowler Standards Track [Page 12]
RFC 2954 Frame Relay Service MIB October 2000
The ifStackTable is then used to show the relationships between the
various interfaces.
ifStackTable Entries
HigherLayer LowerLayer
0 1
1 2
2 3
2 4
2 5
2 6
3 7
4 7
5 7
6 7
7 0
In the case where the frame relay service is using a single ds0, then
the ds0Bundle is not required.
+---------------------+
| Frame Relay Service |
+---------------------+
|
+---+
|ds0|
+---+
|
+---------------------+
| ds1 |
+---------------------+
The assignment of the index values could for example be:
ifIndex Description
1 FrameRelayService (type 44)
2 ds0 (type 81)
3 ds1 (type 18)
The ifStackTable is then used to show the relationships between the
various interfaces.
Rehbehn & Fowler Standards Track [Page 13]
RFC 2954 Frame Relay Service MIB October 2000
ifStackTable Entries
HigherLayer LowerLayer
0 1
1 2
2 3
3 0
2.5.4. Stack Table for V.35 Environments
This section describes by example how to use ifStackTable to
represent the relationship of frame relay service with V.35
interfaces.
+---------------------+
| Frame Relay Service |
+---------------------+
|
+---------------------+
| v35 |
+---------------------+
An example of index values in this case could be:
ifIndex Description
1 FrameRelayService (type 44)
2 v35 (type 33)
Note type 33 (RS232-like MIB) is used instead of type 45 (V.35). V35
does not pertain to this environment.
The ifStackTable is then used to show the relationships between the
various interfaces.
ifStackTable Entries
HigherLayer LowerLayer
0 1
1 2
2 0
2.5.5. The Frame Relay/ATM PVC Service Interworking MIB
Connections between two frame relay endpoints are represented with an
entry in the frPVCConnectTable of this MIB. Both endpoints are
represented with rows in the frPVCEndptTable. The
frPVCEndptConnectIdentifier object of each endpoint points to the
frPVCConnectTable cross-connect table row for the connection.
Rehbehn & Fowler Standards Track [Page 14]
RFC 2954 Frame Relay Service MIB October 2000
In contrast, a connection that spans frame relay and ATM endpoints is
represented with an entry in the frAtmIwfConnectionTable of the
FR/ATM PVC Service Interworking MIB defined in [28].
In the case of an inter-worked connection, the
frPVCEndptConnectIdentifier object is set to zero. Instead, the
frPVCEndptAtmIwfConnIndex object is set to the index of the FR/ATM
IWF cross-connect table row.
The frame relay PVC cross-connect table (frPVCConnectTable) does not
contain an entry for the FR/ATM inter-worked connection.
2.6. Textual Convention Change
Version 1 of the Frame Relay Service MIB contains MIB objects defined
with the DisplayString textual convention. In version 2 of this MIB,
the syntax for these objects has been updated to use the (now
preferred) SnmpAdminString textual convention. The new TC provides
support for a greater variety of international character sets.
The working group realizes that this change is not strictly supported
by SMIv2. In our judgment, the alternative of deprecating the old
objects and defining new objects would have a more adverse impact on
backward compatibility and interoperability, given the particular
semantics of these objects.
3. Object Definitions
FRNETSERV-MIB DEFINITIONS ::= BEGIN
IMPORTS
MODULE-IDENTITY, OBJECT-TYPE,
NOTIFICATION-TYPE, transmission,
Counter32, Integer32 FROM SNMPv2-SMI
TimeStamp, RowStatus FROM SNMPv2-TC
MODULE-COMPLIANCE, OBJECT-GROUP,
NOTIFICATION-GROUP FROM SNMPv2-CONF
InterfaceIndex, ifIndex FROM IF-MIB
SnmpAdminString FROM SNMP-FRAMEWORK-MIB;
frnetservMIB MODULE-IDENTITY
LAST-UPDATED "200009280000Z" -- September 28, 2000
ORGANIZATION "IETF Frame Relay Service MIB Working Group"
CONTACT-INFO
"WG Charter:
http://www.ietf.org/html.charters/frnetmib-charter
WG-email:
frnetmib@sunroof.eng.sun.com
Rehbehn & Fowler Standards Track [Page 15]
RFC 2954 Frame Relay Service MIB October 2000
Subscribe:
frnetmib-request@sunroof.eng.sun.com
Email Archive:
ftp://ftp.ietf.org/ietf-mail-archive/frnetmib
Chair: Andy Malis
Vivace Networks, Inc.
Email: Andy.Malis@vivacenetworks.com
WG editor: Kenneth Rehbehn
Megisto Systems, Inc.
Email: krehbehn@megisto.com
Co-author: David Fowler
Syndesis Limited,
EMail: fowler@syndesis.com"
DESCRIPTION
"The MIB module to describe generic objects for
Frame Relay Network Service."
--
-- Revision History
--
REVISION "200009280000Z"
DESCRIPTION
"Published as RFC 2954.
The major new features of this revision include:
o Support for read-write capability to
provision switch components providing service,
o Support for cross-connection via a frame relay
to ATM service interworking function,
o Support for frame relay fragmentation,
o Additional frame counters to track frame
loss.
Refer to Appendix A for a comprehensive list of
changes since RFC 1604."
REVISION "199311161200Z"
DESCRIPTION
"Published as RFC 1604."
::= { transmission 44 }
Rehbehn & Fowler Standards Track [Page 16]
RFC 2954 Frame Relay Service MIB October 2000
frnetservObjects
OBJECT IDENTIFIER ::= { frnetservMIB 1 }
frnetservTraps
OBJECT IDENTIFIER ::= { frnetservMIB 2 }
frnetservTrapsPrefix
OBJECT IDENTIFIER ::= { frnetservTraps 0 }
--
-- The Frame Relay Service Logical Port
--
frLportTable OBJECT-TYPE
SYNTAX SEQUENCE OF FrLportEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The Frame Relay Logical Port Information table is
an interface-specific addendum to the generic
ifTable of the Interface MIB."
::= { frnetservObjects 1 }
frLportEntry OBJECT-TYPE
SYNTAX FrLportEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in the Frame Relay Logical Port
Information table."
INDEX { ifIndex }
::= { frLportTable 1 }
FrLportEntry ::=
SEQUENCE {
frLportNumPlan INTEGER,
frLportContact SnmpAdminString,
frLportLocation SnmpAdminString,
frLportType INTEGER,
frLportAddrDLCILen INTEGER,
frLportVCSigProtocol INTEGER,
frLportVCSigPointer OBJECT IDENTIFIER,
frLportDLCIIndexValue Integer32,
frLportTypeAdmin INTEGER,
frLportVCSigProtocolAdmin INTEGER,
frLportFragControl INTEGER,
frLportFragSize Integer32
}
Rehbehn & Fowler Standards Track [Page 17]
RFC 2954 Frame Relay Service MIB October 2000
frLportNumPlan OBJECT-TYPE
SYNTAX INTEGER {
other(1),
e164(2),
x121(3),
none(4)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of this object identifies the network
address numbering plan for this UNI/NNI logical
port. The network address is the object
ifPhysAddress. The value none(4) implies that
there is no ifPhysAddress. The FRS agent will
return an octet string of zero length for
ifPhysAddress. The value other(1) means that an
address has been assigned to this interface, but
the numbering plan is not enumerated here."
REFERENCE "E.164 [29]
X.121 [30]"
::= { frLportEntry 1 }
frLportContact OBJECT-TYPE
SYNTAX SnmpAdminString
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of this object identifies the network
contact for this UNI/NNI logical port."
::= { frLportEntry 2 }
frLportLocation OBJECT-TYPE
SYNTAX SnmpAdminString
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of this object identifies the frame
relay network location for this UNI/NNI logical
port."
::= { frLportEntry 3 }
frLportType OBJECT-TYPE
SYNTAX INTEGER {
uni(1),
nni(2)
}
MAX-ACCESS read-only
Rehbehn & Fowler Standards Track [Page 18]
RFC 2954 Frame Relay Service MIB October 2000
STATUS current
DESCRIPTION
"The value of this object identifies the type of
network interface for this logical port."
::= { frLportEntry 4 }
frLportAddrDLCILen OBJECT-TYPE
SYNTAX INTEGER {
twoOctets10Bits(1),
threeOctets10Bits(2),
threeOctets16Bits(3),
fourOctets17Bits(4),
fourOctets23Bits(5)
}
UNITS "Octets"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of this object identifies the Q.922
Address field length and DLCI length for this
UNI/NNI logical port."
REFERENCE "Q.922 [25]"
::= { frLportEntry 5 }
frLportVCSigProtocol OBJECT-TYPE
SYNTAX INTEGER {
none(1),
lmi(2),
ansiT1617D(3),
ansiT1617B(4),
ccittQ933A(5)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of this object identifies the Local
In-Channel Signaling Protocol that is used for
this frame relay UNI/NNI logical port.
none(1): Interface does not use a PVC
signaling protocol
lmi(2): Interface operates the Stratacom/
Nortel/DEC Local Management
Interface Specification protocol
ansiT1617D(3): Interface operates the ANSI T1.617
Annex D PVC status protocol
Rehbehn & Fowler Standards Track [Page 19]
RFC 2954 Frame Relay Service MIB October 2000
ansiT1617B(4): Interface operates the ANSI
T1.617
Annex B procedures
ccittQ933A(5): Interface operates the ITU Q.933
Annex A PVC status protocol"
REFERENCE "LMI [24]
T1.617 Annex D [17],
Q.933 Annex A [22]"
::= { frLportEntry 6 }
frLportVCSigPointer OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS read-only
STATUS deprecated
DESCRIPTION
"The value of this object is used as a pointer to
the table that contains the Local In-Channel
Signaling Protocol parameters and errors for this
UNI/NNI logical port.
This object has been deprecated to reflect the
fact that the local in-channel signaling
parameters are accessed from a single table
(frMgtVCSigTable) that includes parameters for all
possible signaling protocols. Early design
anticipated multiple tables, one for each
signaling protocol."
::= { frLportEntry 7 }
frLportDLCIIndexValue OBJECT-TYPE
SYNTAX Integer32 (16..4194303)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object contains a hint to be used for
frPVCEndptDLCIIndex when creating entries in the
frPVCEndptTable. The SYNTAX of this object
matches the SYNTAX of the frPVCEndptDLCIIndex - an
object that is restricted to legal Q.922 DLCI
values for the size of the address field.
The value 0 indicates that no unassigned entries
are available.
To obtain the frPVCEndptDLCIIndex value for a new
entry, the manager issues a management protocol
retrieval operation to obtain the current value of
Rehbehn & Fowler Standards Track [Page 20]
RFC 2954 Frame Relay Service MIB October 2000
this object. After each retrieval, the agent must
modify the value to the next unassigned index to
prevent assignment of the same value to multiple
management systems.
A management system should repeat the read to
obtain a new value should an attempt to create the
new row using the previously returned hint fail."
REFERENCE "Q.922 [25]"
::= { frLportEntry 8 }
frLportTypeAdmin OBJECT-TYPE
SYNTAX INTEGER {
uni(1),
nni(2)
}
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The value of this object desired identifies the
type of network interface for this logical port."
::= { frLportEntry 9 }
frLportVCSigProtocolAdmin OBJECT-TYPE
SYNTAX INTEGER {
none(1),
lmi(2),
ansiT1617D(3),
ansiT1617B(4),
ccittQ933A(5)
}
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The value of this object identifies the desired
Local In-Channel Signaling Protocol that is used
for this frame relay UNI/NNI logical port. This
value must be made the active protocol as soon as
possible on the device.
Refer to frLportVCSigProtocol for a description of
each signaling protocol choices."
REFERENCE "LMI [24]
T1.617 Annex D [17],
Q.933 Annex A [22]"
::= { frLportEntry 10 }
frLportFragControl OBJECT-TYPE
Rehbehn & Fowler Standards Track [Page 21]
RFC 2954 Frame Relay Service MIB October 2000
SYNTAX INTEGER {
on(1),
off(2)
}
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"This object controls the transmission and
reception of fragmentation frames for this UNI or
NNI interface.
on(1) Frames are fragmented using the interface
fragmentation format
Note: The customer side of the interface
must also be configured to fragment
frames.
off(2) Frames are not fragmented using the
interface fragmentation format."
REFERENCE "FRF.12 [21]"
DEFVAL { off }
::= { frLportEntry 11 }
frLportFragSize OBJECT-TYPE
SYNTAX Integer32 (0..4096)
UNITS "Octets"
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The value of this object is the size in octets of
the maximum size of each fragment to be sent when
fragmenting. This object is only used by the
fragmentation transmitter, and the two sides of
the interface may differ. The fragment size
includes the octets for the frame relay header,
the UI octet, the NLPID, the fragmentation header,
and the fragment payload. If frLportFragControl is
set to off, this value should be zero."
REFERENCE "FRF.12 [21]"
DEFVAL { 0 }
::= { frLportEntry 12 }
--
-- Frame Relay Management VC Signaling
--
frMgtVCSigTable OBJECT-TYPE
SYNTAX SEQUENCE OF FrMgtVCSigEntry
Rehbehn & Fowler Standards Track [Page 22]
RFC 2954 Frame Relay Service MIB October 2000
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The Frame Relay Management VC Signaling
Parameters and Errors table."
::= { frnetservObjects 2 }
frMgtVCSigEntry OBJECT-TYPE
SYNTAX FrMgtVCSigEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in the Frame Relay Management VC
Signaling Parameters Errors table."
INDEX { ifIndex }
::= { frMgtVCSigTable 1 }
FrMgtVCSigEntry ::=
SEQUENCE {
frMgtVCSigProced INTEGER,
frMgtVCSigUserN391 INTEGER,
frMgtVCSigUserN392 INTEGER,
frMgtVCSigUserN393 INTEGER,
frMgtVCSigUserT391 INTEGER,
frMgtVCSigNetN392 INTEGER,
frMgtVCSigNetN393 INTEGER,
frMgtVCSigNetT392 INTEGER,
frMgtVCSigNetnN4 INTEGER,
frMgtVCSigNetnT3 INTEGER,
frMgtVCSigUserLinkRelErrors Counter32,
frMgtVCSigUserProtErrors Counter32,
frMgtVCSigUserChanInactive Counter32,
frMgtVCSigNetLinkRelErrors Counter32,
frMgtVCSigNetProtErrors Counter32,
frMgtVCSigNetChanInactive Counter32,
frMgtVCSigProcedAdmin INTEGER,
frMgtVCSigUserN391Admin INTEGER,
frMgtVCSigUserN392Admin INTEGER,
frMgtVCSigUserN393Admin INTEGER,
frMgtVCSigUserT391Admin INTEGER,
frMgtVCSigNetN392Admin INTEGER,
frMgtVCSigNetN393Admin INTEGER,
frMgtVCSigNetT392Admin INTEGER,
frMgtVCSigNetnT3Admin INTEGER
}
frMgtVCSigProced OBJECT-TYPE
SYNTAX INTEGER {
Rehbehn & Fowler Standards Track [Page 23]
RFC 2954 Frame Relay Service MIB October 2000
u2nnet(1),
bidirect(2),
u2nuser(3)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of this object identifies the local
in-channel signaling procedural role that is used
for this UNI/NNI logical port. Bidirectional
procedures implies that both user-side and
network-side procedural roles are used.
u2nnet(1) Logical port operates user to network
procedure in the role of the network
side
bidirect(2) Logical port operates the
bidirectional procedure (both user
and network side roles)
u2nuser(3) Logical port operates user to network
procedure in the role of the user
side"
REFERENCE "Q.933 Annex A [22],
T1.617 Annex D [17]"
::= { frMgtVCSigEntry 1 }
frMgtVCSigUserN391 OBJECT-TYPE
SYNTAX INTEGER (1..255)
UNITS "Polls"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of this object identifies the User-side
N391 full status polling cycle value for this
UNI/NNI logical port. If the logical port is not
performing user-side (bidirectional) procedures,
then this object is not instantiated and an
attempt to read will result in the noSuchInstance
exception response."
REFERENCE "Q.933 Annex A [22],
T1.617 Annex D [17]"
DEFVAL { 6 }
::= { frMgtVCSigEntry 2 }
frMgtVCSigUserN392 OBJECT-TYPE
SYNTAX INTEGER (1..10)
Rehbehn & Fowler Standards Track [Page 24]
RFC 2954 Frame Relay Service MIB October 2000
UNITS "Events"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of this object identifies the User-side
N392 error threshold value for this UNI/NNI
logical port. If the logical port is not
performing user-side (bidirectional) procedures,
then this object is not instantiated."
REFERENCE "Q.933 Annex A [22],
T1.617 Annex D [17]"
DEFVAL { 3 }
::= { frMgtVCSigEntry 3 }
frMgtVCSigUserN393 OBJECT-TYPE
SYNTAX INTEGER (1..10)
UNITS "Events"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of this object identifies the User-side
N393 monitored events count value for this UNI/NNI
logical port. If the logical port is not
performing user-side (bidirectional) procedures,
then this object is not instantiated."
REFERENCE "Q.933 Annex A [22],
T1.617 Annex D [17]"
DEFVAL { 4 }
::= { frMgtVCSigEntry 4 }
frMgtVCSigUserT391 OBJECT-TYPE
SYNTAX INTEGER (5..30)
UNITS "Seconds"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of this object identifies the User-side
T391 link integrity verification polling timer
value for this UNI/NNI logical port. If the
logical port is not performing user-side
procedures, then this object is not instantiated."
REFERENCE "Q.933 Annex A [22],
T1.617 Annex D [17]"
DEFVAL { 10 }
::= { frMgtVCSigEntry 5 }
frMgtVCSigNetN392 OBJECT-TYPE
SYNTAX INTEGER (1..10)
Rehbehn & Fowler Standards Track [Page 25]
RFC 2954 Frame Relay Service MIB October 2000
UNITS "Events"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of this object identifies the Network-
side N392 error threshold value (nN2 for LMI) for
this UNI/NNI logical port. If the logical port is
not performing network-side procedures, then this
object is not instantiated."
REFERENCE "Q.933 Annex A [22],
T1.617 Annex D [17],
LMI [24]"
DEFVAL { 3 }
::= { frMgtVCSigEntry 6 }
frMgtVCSigNetN393 OBJECT-TYPE
SYNTAX INTEGER (1..10)
UNITS "Events"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of this object identifies the Network-
side N393 monitored events count value (nN3 for
LMI) for this UNI/NNI logical port. If the
logical port is not performing network-side
procedures, then this object is not instantiated."
REFERENCE "Q.933 Annex A [22],
T1.617 Annex D [17],
LMI [24]"
DEFVAL { 4 }
::= { frMgtVCSigEntry 7 }
frMgtVCSigNetT392 OBJECT-TYPE
SYNTAX INTEGER (5..30)
UNITS "Seconds"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of this object identifies the Network-
side T392 polling verification timer value (nT2
for LMI) for this UNI/NNI logical port. If the
logical port is not performing network-side
procedures, then this object is not instantiated."
REFERENCE "Q.933 Annex A [22],
T1.617 Annex D [17],
LMI [24]"
DEFVAL { 15 }
::= { frMgtVCSigEntry 8 }
Rehbehn & Fowler Standards Track [Page 26]
RFC 2954 Frame Relay Service MIB October 2000
frMgtVCSigNetnN4 OBJECT-TYPE
SYNTAX INTEGER (5..5)
UNITS "Events"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of this object identifies the Network-
side nN4 maximum status enquires received value
for this UNI/NNI logical port. If the logical
port is not performing network-side procedures or
is not performing LMI procedures, then this object
is not instantiated.
This object applies only to LMI and always has a
value of 5."
REFERENCE "LMI [24]"
::= { frMgtVCSigEntry 9 }
frMgtVCSigNetnT3 OBJECT-TYPE
SYNTAX INTEGER (5 | 10 | 15 | 20 | 25 | 30)
UNITS "Seconds"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of this object identifies the Network-
side nT3 timer (for nN4 status enquires received)
value for this UNI/NNI logical port. If the
logical port is not performing network-side
procedures or is not performing LMI procedures,
then this object is not instantiated.
This object applies only to LMI."
REFERENCE "LMI [24]"
DEFVAL { 20 }
::= { frMgtVCSigEntry 10 }
frMgtVCSigUserLinkRelErrors OBJECT-TYPE
SYNTAX Counter32
UNITS "Errors"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of user-side local in-channel
signaling link reliability errors (i.e., non-
receipt of Status/Status Enquiry messages or
invalid sequence numbers in a Link Integrity
Verification Information Element) for this UNI/NNI
logical port. If the logical port is not
Rehbehn & Fowler Standards Track [Page 27]
RFC 2954 Frame Relay Service MIB October 2000
performing user-side procedures, then this object
is not instantiated."
::= { frMgtVCSigEntry 11 }
frMgtVCSigUserProtErrors OBJECT-TYPE
SYNTAX Counter32
UNITS "Errors"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of user-side local in-channel
signaling protocol errors (i.e., protocol
discriminator, unnumbered information, message
type, call reference, and mandatory information
element errors) for this UNI/NNI logical port. If
the logical port is not performing user-side
procedures, then this object is not instantiated."
::= { frMgtVCSigEntry 12 }
frMgtVCSigUserChanInactive OBJECT-TYPE
SYNTAX Counter32
UNITS "Events"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of times the user-side channel was
declared inactive (i.e., N392 errors in N393
events) for this UNI/NNI logical port. If the
logical port is not performing user-side
procedures, then this object is not instantiated."
::= { frMgtVCSigEntry 13 }
frMgtVCSigNetLinkRelErrors OBJECT-TYPE
SYNTAX Counter32
UNITS "Errors"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of network-side local in-channel
signaling link reliability errors (i.e., non-
receipt of Status/Status Enquiry messages or
invalid sequence numbers in a Link Integrity
Verification Information Element) for this UNI/NNI
logical port."
::= { frMgtVCSigEntry 14 }
frMgtVCSigNetProtErrors OBJECT-TYPE
SYNTAX Counter32
Rehbehn & Fowler Standards Track [Page 28]
RFC 2954 Frame Relay Service MIB October 2000
UNITS "Errors"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of network-side local in-channel
signaling protocol errors (i.e., protocol
discriminator, message type, call reference, and
mandatory information element errors) for this
UNI/NNI logical port."
::= { frMgtVCSigEntry 15 }
frMgtVCSigNetChanInactive OBJECT-TYPE
SYNTAX Counter32
UNITS "Events"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of times the network-side channel was
declared inactive (i.e., N392 errors in N393
events) for this UNI/NNI logical port."
::= { frMgtVCSigEntry 16 }
frMgtVCSigProcedAdmin OBJECT-TYPE
SYNTAX INTEGER {
u2nnet(1),
bidirect(2),
u2nuser(3)
}
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The value of this object identifies the local
in-channel signaling procedural role that is used
for this UNI/NNI logical port. Bidirectional
procedures implies that both user-side and
network-side procedural roles are used.
u2nnet(1) Logical port operates user to network
procedure in the role of the network
side
bidirect(2) Logical port operates the
bidirectional procedure (both user
and network side roles)
u2nuser(3) Logical port operates user to network
procedure in the role of the user
side"
Rehbehn & Fowler Standards Track [Page 29]
RFC 2954 Frame Relay Service MIB October 2000
REFERENCE "Q.933 Annex A [22],
T1.617 Annex D [17]"
DEFVAL { u2nnet }
::= { frMgtVCSigEntry 17 }
frMgtVCSigUserN391Admin OBJECT-TYPE
SYNTAX INTEGER (1..255)
UNITS "Polls"
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The value of this object identifies the desired
User-side N391 full status polling cycle value for
this UNI/NNI logical port. If the logical port is
not performing user-side (bidirectional)
procedures, then this object is not instantiated."
REFERENCE "Q.933 Annex A [22],
T1.617 Annex D [17]"
::= { frMgtVCSigEntry 18 }
frMgtVCSigUserN392Admin OBJECT-TYPE
SYNTAX INTEGER (1..10)
UNITS "Events"
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The value of this object identifies the desired
User-side N392 error threshold value for this
UNI/NNI logical port. If the logical port is not
performing user-side (bidirectional) procedures,
then this object is not instantiated."
REFERENCE "Q.933 Annex A [22],
T1.617 Annex D [17]"
::= { frMgtVCSigEntry 19 }
frMgtVCSigUserN393Admin OBJECT-TYPE
SYNTAX INTEGER (1..10)
UNITS "Events"
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The value of this object identifies the desired
User-side N393 monitored events count value for
this UNI/NNI logical port. If the logical port is
not performing user-side (bidirectional)
procedures, then this object is not instantiated."
REFERENCE "Q.933 Annex A [22],
T1.617 Annex D [17]"
Rehbehn & Fowler Standards Track [Page 30]
RFC 2954 Frame Relay Service MIB October 2000
::= { frMgtVCSigEntry 20 }
frMgtVCSigUserT391Admin OBJECT-TYPE
SYNTAX INTEGER (5..30)
UNITS "Seconds"
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The value of this object identifies the desired
User-side T391 link integrity verification polling
timer value for this UNI/NNI logical port. If the
logical port is not performing user-side
procedures, then this object is not instantiated."
REFERENCE "Q.933 Annex A [22],
T1.617 Annex D [17]"
::= { frMgtVCSigEntry 21 }
frMgtVCSigNetN392Admin OBJECT-TYPE
SYNTAX INTEGER (1..10)
UNITS "Events"
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The value of this object identifies the desired
Network-side N392 error threshold value (nN2 for
LMI) for this UNI/NNI logical port. If the
logical port is not performing network-side
procedures, then this object is not instantiated."
REFERENCE "Q.933 Annex A [22],
T1.617 Annex D [17],
LMI [24]"
::= { frMgtVCSigEntry 22 }
frMgtVCSigNetN393Admin OBJECT-TYPE
SYNTAX INTEGER (1..10)
UNITS "Events"
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The value of this object identifies the desired
Network-side N393 monitored events count value
(nN3 for LMI) for this UNI/NNI logical port. If
the logical port is not performing network-side
procedures, then this object is not instantiated."
REFERENCE "Q.933 Annex A [22],
T1.617 Annex D [17],
LMI [24]"
::= { frMgtVCSigEntry 23 }
Rehbehn & Fowler Standards Track [Page 31]
RFC 2954 Frame Relay Service MIB October 2000
frMgtVCSigNetT392Admin OBJECT-TYPE
SYNTAX INTEGER (5..30)
UNITS "Seconds"
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The value of this object identifies the desired
Network-side T392 polling verification timer value
(nT2 for LMI) for this UNI/NNI logical port. If
the logical port is not performing network-side
procedures, then this object is not instantiated."
REFERENCE "Q.933 Annex A [22],
T1.617 Annex D [17],
LMI [24]"
::= { frMgtVCSigEntry 24 }
frMgtVCSigNetnT3Admin OBJECT-TYPE
SYNTAX INTEGER (5 | 10 | 15 | 20 | 25 | 30)
UNITS "Seconds"
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The value of this object identifies the desired
Network-side nT3 timer (for nN4 status enquires
received) value for this UNI/NNI logical port. If
the logical port is not performing network-side
procedures or is not performing LMI procedures,
then this object is not instantiated. This object
applies only to LMI."
REFERENCE "LMI [24]"
::= { frMgtVCSigEntry 25 }
--
-- Frame Relay PVC End-points
--
frPVCEndptTable OBJECT-TYPE
SYNTAX SEQUENCE OF FrPVCEndptEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The Frame Relay PVC End-Point table. This table
is used to model a PVC end-point. This table
contains the traffic parameters and statistics for
a PVC end-point.
This table is used to identify the traffic
parameters for a bi-directional PVC segment end-
Rehbehn & Fowler Standards Track [Page 32]
RFC 2954 Frame Relay Service MIB October 2000
point, and it also provides statistics for a PVC
segment end-point.
A PVC segment end-point is identified by a UNI/NNI
logical port index value and DLCI index value.
If the frame relay service provider allows the
frame relay CNM subscriber to create, modify or
delete PVCs using SNMP, then this table is used to
identify and reserve the requested traffic
parameters of each PVC segment end-point. The
Connection table is used to 'connect' the end-
points together. Not all implementations will
support the capability of
creating/modifying/deleting PVCs using SNMP as a
feature of frame relay CNM service.
Uni-directional PVCs are modeled with zero valued
traffic parameters in one of the directions (In or
Out direction) in this table.
To create a PVC, the following procedures shall be
followed:
1) Create the entries for the PVC segment
endpoints in the frPVCEndptTable by specifying
the traffic parameters for the bi-directional
PVC segment endpoints. As shown in figure 2, a
point-to-point PVC has two endpoints, thus two
entries in this table. Uni-directional PVCs
are modeled with zero valued traffic
parameters in one direction; all the `In'
direction parameters for one frame relay PVC
End-point or all the `Out' direction
parameters for the other frame relay PVC
Endpoint.
In _____________________________ Out
>>>>>>| |>>>>>>>>
______| Frame Relay Network |________
Out | | In
<<<<<<|_____________________________|<<<<<<<<
Frame Relay Frame Relay
PVC PVC
Endpoint Endpoint
Figure 2, PVC Terminology
Rehbehn & Fowler Standards Track [Page 33]
RFC 2954 Frame Relay Service MIB October 2000
2) Go to the Frame Relay Connection Group."
::= { frnetservObjects 3 }
frPVCEndptEntry OBJECT-TYPE
SYNTAX FrPVCEndptEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in the Frame Relay PVC Endpoint table."
INDEX { ifIndex, frPVCEndptDLCIIndex }
::= { frPVCEndptTable 1 }
FrPVCEndptEntry ::=
SEQUENCE {
frPVCEndptDLCIIndex Integer32,
frPVCEndptInMaxFrameSize Integer32,
frPVCEndptInBc Integer32,
frPVCEndptInBe Integer32,
frPVCEndptInCIR Integer32,
frPVCEndptOutMaxFrameSize Integer32,
frPVCEndptOutBc Integer32,
frPVCEndptOutBe Integer32,
frPVCEndptOutCIR Integer32,
frPVCEndptConnectIdentifier Integer32,
frPVCEndptRowStatus RowStatus,
frPVCEndptRcvdSigStatus INTEGER,
frPVCEndptInFrames Counter32,
frPVCEndptOutFrames Counter32,
frPVCEndptInDEFrames Counter32,
frPVCEndptInExcessFrames Counter32,
frPVCEndptOutExcessFrames Counter32,
frPVCEndptInDiscards Counter32,
frPVCEndptInOctets Counter32,
frPVCEndptOutOctets Counter32,
frPVCEndptInDiscardsDESet Counter32,
frPVCEndptInFramesFECNSet Counter32,
frPVCEndptOutFramesFECNSet Counter32,
frPVCEndptInFramesBECNSet Counter32,
frPVCEndptOutFramesBECNSet Counter32,
frPVCEndptInCongDiscards Counter32,
frPVCEndptInDECongDiscards Counter32,
frPVCEndptOutCongDiscards Counter32,
frPVCEndptOutDECongDiscards Counter32,
frPVCEndptOutDEFrames Counter32,
frPVCEndptAtmIwfConnIndex Integer32
}
Rehbehn & Fowler Standards Track [Page 34]
RFC 2954 Frame Relay Service MIB October 2000
frPVCEndptDLCIIndex OBJECT-TYPE
SYNTAX Integer32 (16..4194303)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The value of this object is equal to the DLCI
value for this PVC end-point.
The values are restricted to the legal range for
the size of address field supported by the logical
port (frLportAddrDLCILen)."
REFERENCE "Q.922 [25]"
::= { frPVCEndptEntry 1 }
frPVCEndptInMaxFrameSize OBJECT-TYPE
SYNTAX Integer32 (1..4096)
UNITS "Octets"
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The value of this object is the size in octets of
the largest frame relay information field for this
PVC end-point in the ingress direction (into the
frame relay network). The value of
frPVCEndptInMaxFrameSize must be less than or
equal to the corresponding ifMtu for this frame
relay UNI/NNI logical port."
REFERENCE "FRF.1 [31]
Q.922 [25]
Q.933 [22]"
DEFVAL { 1600 }
::= { frPVCEndptEntry 2 }
frPVCEndptInBc OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
UNITS "Bits"
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The value of this object is equal to the
committed burst size (Bc) parameter (measured in
bits) for this PVC end-point in the ingress
direction (into the frame relay network).
Note that the max value of this range is lower
than the max value allowed by Q.933 (16383 *
10**6).
Rehbehn & Fowler Standards Track [Page 35]
RFC 2954 Frame Relay Service MIB October 2000
Note that the value is encoded in bits whilst the
Q.933 Link layer core parameters information
element encodes this information using octet
units."
REFERENCE "Q.933 [22]"
::= { frPVCEndptEntry 3 }
frPVCEndptInBe OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
UNITS "Bits"
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The value of this object is equal to the excess
burst size (Be) parameter (measured in bits) for
this PVC end-point in the ingress direction (into
the frame relay network).
Note that the max value of this range is lower
than the max value allowed by Q.933 (16383 *
10**6).
Note that the value is encoded in bits whilst the
Q.933 Link layer core parameters information
element encodes this information using octet
units."
REFERENCE "Q.933 [22]"
::= { frPVCEndptEntry 4 }
frPVCEndptInCIR OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
UNITS "Bits per Second"
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The value of this object is equal to the
committed information rate (CIR) parameter
(measured in bits per second) for this PVC end-
point in the ingress direction (into the frame
relay network).
Note that the max value of this range is lower
than the max value allowed by Q.933 (2047 *
10**6)."
REFERENCE "Q.933 [22]"
::= { frPVCEndptEntry 5 }
frPVCEndptOutMaxFrameSize OBJECT-TYPE
Rehbehn & Fowler Standards Track [Page 36]
RFC 2954 Frame Relay Service MIB October 2000
SYNTAX Integer32 (1..4096)
UNITS "Octets"
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The value of this object is the size in octets of
the largest frame relay information field for this
PVC end-point in the egress direction (out of the
frame relay network). The value of
frPVCEndptOutMaxFrameSize must be less than or
equal to the corresponding ifMtu for this frame
relay UNI/NNI logical port."
REFERENCE "FRF.1 [31]
Q.922 [25]
Q.933 [22]"
DEFVAL { 1600 }
::= { frPVCEndptEntry 6 }
frPVCEndptOutBc OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
UNITS "Bits"
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The value of this object is equal to the
committed burst size (Bc) parameter (measured in
bits) for this PVC end-point in the egress
direction (out of the frame relay network).
Note that the max value of this range is lower
than the max value allowed by Q.933 (16383 *
10**6).
Note that the value is encoded in bits whilst the
Q.933 Link layer core parameters information
element encodes this information using octet
units."
REFERENCE "Q.933 [22]"
::= { frPVCEndptEntry 7 }
frPVCEndptOutBe OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
UNITS "Bits"
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The value of this object is equal to the excess
burst size (Be) parameter (measured in bits) for
Rehbehn & Fowler Standards Track [Page 37]
RFC 2954 Frame Relay Service MIB October 2000
this PVC end-point in the egress direction (out of
the frame relay network).
Note that the max value of this range is lower
than the max value allowed by Q.933 (16383 *
10**6).
Note that the value is encoded in bits whilst the
Q.933 Link layer core parameters information
element encodes this information using octet
units."
REFERENCE "Q.933 [22]"
::= { frPVCEndptEntry 8 }
frPVCEndptOutCIR OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
UNITS "Bits per Second"
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The value of this object is equal to the
committed information rate (CIR) parameter
(measured in bits per second) for this PVC end-
point in the egress direction (out of the frame
relay network).
Note that the max value of this range is lower
than the max value allowed by Q.933 (2047 *
10**6)."
REFERENCE "Q.933 [22]"
::= { frPVCEndptEntry 9 }
frPVCEndptConnectIdentifier OBJECT-TYPE
SYNTAX Integer32 (0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object is used to associate PVC end-points
as being part of one PVC segment connection. This
value of this object is equal to the value of
frPVCConnectIndex, which is used as one of the
indices into the frPVCConnectTable.
A connection that has been cross-connected via the
FR/ATM PVC Service IWF cross-connect table will
return the value zero when this object is read. In
case of these interworked connections, the
frPVCEndptAtmIwfConnIndex object must be accessed
Rehbehn & Fowler Standards Track [Page 38]
RFC 2954 Frame Relay Service MIB October 2000
to select the entry in the FR/ATM PVC Service IWF
cross-connect table.
The value of this object is provided by the agent,
after the associated entries in the
frPVCConnectTable or frAtmIwfConnectionTable have
been created."
::= { frPVCEndptEntry 10 }
frPVCEndptRowStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object is used to create new rows in this
table, modify existing rows, and to delete
existing rows. To create a new PVC, the entries
for the PVC segment end-points in the
frPVCEndptTable must first be created. Next, the
frPVCConnectTable is used to associate the frame
relay PVC segment end-points. In order for the
manager to have the necessary error diagnostics,
the frPVCEndptRowStatus object must initially be
set to `createAndWait(5)'. While the
frPVCEndptRowStatus object is in the
`createAndWait(5)' state, the manager can set each
columnar object and get the necessary error
diagnostics. The frPVCEndptRowStatus object may
not be set to `active(1)' unless the following
columnar objects exist in this row:
frPVCEndptInMaxFrameSize, frPVCEndptInBc,
frPVCEndptInBe, frPVCEndptInCIR,
frPVCEndptOutMaxFrameSize, frPVCEndptOutBc,
frPVCEndptOutBe, and frPVCEndptOutCIR."
::= { frPVCEndptEntry 11 }
frPVCEndptRcvdSigStatus OBJECT-TYPE
SYNTAX INTEGER {
deleted(1),
active(2),
inactive(3),
none(4)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of this object identifies the PVC
status received via the local in-channel signaling
Rehbehn & Fowler Standards Track [Page 39]
RFC 2954 Frame Relay Service MIB October 2000
procedures for this PVC end-point. This object is
only pertinent for interfaces that perform the
bidirectional procedures.
Each value has the following meaning:
deleted(1): This PVC is not listed in the full
status reports received from the
user device. The object retains
this value for as long as the PVC
is not listed in the full status
reports
active(2): This PVC is reported as active, or
operational, by the user device.
inactive(3): This PVC is reported as inactive,
or non-operational, by the user
device.
none(4): This interface is only using the
network-side in-channel signaling
procedures, so this object does
not apply."
::= { frPVCEndptEntry 12 }
frPVCEndptInFrames OBJECT-TYPE
SYNTAX Counter32
UNITS "Frames"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of frames received by the network
(ingress) for this PVC end-point. This includes
any frames discarded by the network due to
submitting more than Bc + Be data or due to any
network congestion recovery procedures."
::= { frPVCEndptEntry 13 }
frPVCEndptOutFrames OBJECT-TYPE
SYNTAX Counter32
UNITS "Frames"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of frames sent by the network (egress)
regardless of whether they are Bc or Be frames for
this PVC end-point."
::= { frPVCEndptEntry 14 }
Rehbehn & Fowler Standards Track [Page 40]
RFC 2954 Frame Relay Service MIB October 2000
frPVCEndptInDEFrames OBJECT-TYPE
SYNTAX Counter32
UNITS "Frames"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of frames received by the network
(ingress) with the DE bit set to (1) for this PVC
end-point."
::= { frPVCEndptEntry 15 }
frPVCEndptInExcessFrames OBJECT-TYPE
SYNTAX Counter32
UNITS "Frames"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of frames received by the network
(ingress) for this PVC end-point which were
treated as excess traffic. Frames which are sent
to the network with DE set to zero are treated as
excess when more than Bc bits are submitted to the
network during the Committed Information Rate
Measurement Interval (Tc). Excess traffic may or
may not be discarded at the ingress if more than
Bc + Be bits are submitted to the network during
Tc. Traffic discarded at the ingress is not
recorded in frPVCEndptInExcessFrames. Frames
which are sent to the network with DE set to one
are also treated as excess traffic."
::= { frPVCEndptEntry 16 }
frPVCEndptOutExcessFrames OBJECT-TYPE
SYNTAX Counter32
UNITS "Frames"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of frames sent by the network (egress)
for this PVC end-point which were treated as
excess traffic. (The DE bit may be set to one.)"
::= { frPVCEndptEntry 17 }
frPVCEndptInDiscards OBJECT-TYPE
SYNTAX Counter32
UNITS "Frames"
MAX-ACCESS read-only
STATUS current
Rehbehn & Fowler Standards Track [Page 41]
RFC 2954 Frame Relay Service MIB October 2000
DESCRIPTION
"The number of frames received by the network
(ingress) that were discarded due to traffic
enforcement for this PVC end-point. Congestion
discards are not counted in this object."
::= { frPVCEndptEntry 18 }
frPVCEndptInOctets OBJECT-TYPE
SYNTAX Counter32
UNITS "Octets"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of octets received by the network
(ingress) for this PVC end-point. This counter
should only count octets from the beginning of the
frame relay header field to the end of user data.
If the network supporting frame relay can not
count octets, then this count should be an
approximation."
::= { frPVCEndptEntry 19 }
frPVCEndptOutOctets OBJECT-TYPE
SYNTAX Counter32
UNITS "Octets"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of octets sent by the network (egress)
for this PVC end-point. This counter should only
count octets from the beginning of the frame relay
header field to the end of user data. If the
network supporting frame relay can not count
octets, then this count should be an
approximation."
::= { frPVCEndptEntry 20 }
frPVCEndptInDiscardsDESet OBJECT-TYPE
SYNTAX Counter32
UNITS "Frames"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of frames received by the network
(ingress) that were discarded with the DE bit set
due to traffic enforcement for this PVC end-point.
Congestion discards are not counted in this
object."
Rehbehn & Fowler Standards Track [Page 42]
RFC 2954 Frame Relay Service MIB October 2000
::= { frPVCEndptEntry 21 }
frPVCEndptInFramesFECNSet OBJECT-TYPE
SYNTAX Counter32
UNITS "Frames"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of frames received by the network
(ingress) that have the FECN bit set for this PVC
end-point."
::= { frPVCEndptEntry 22 }
frPVCEndptOutFramesFECNSet OBJECT-TYPE
SYNTAX Counter32
UNITS "Frames"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of frames sent by the network (egress)
that have the FECN bit set for this PVC end-
point."
::= { frPVCEndptEntry 23 }
frPVCEndptInFramesBECNSet OBJECT-TYPE
SYNTAX Counter32
UNITS "Frames"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of frames received by the network
(ingress) that have the BECN bit set for this PVC
end-point."
::= { frPVCEndptEntry 24 }
frPVCEndptOutFramesBECNSet OBJECT-TYPE
SYNTAX Counter32
UNITS "Frames"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of frames sent by the network (egress)
that have the BECN bit set for this PVC end-
point."
::= { frPVCEndptEntry 25 }
frPVCEndptInCongDiscards OBJECT-TYPE
SYNTAX Counter32
Rehbehn & Fowler Standards Track [Page 43]
RFC 2954 Frame Relay Service MIB October 2000
UNITS "Frames"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of frames received by the network
(ingress) that were discarded due to input buffer
congestion, rather than traffic enforcement, for
this PVC end-point."
::= { frPVCEndptEntry 26 }
frPVCEndptInDECongDiscards OBJECT-TYPE
SYNTAX Counter32
UNITS "Frames"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of frames counted by
frPVCEndptInCongDiscards with the DE bit set to
(1)."
::= { frPVCEndptEntry 27 }
frPVCEndptOutCongDiscards OBJECT-TYPE
SYNTAX Counter32
UNITS "Frames"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of frames sent by the network (egress)
that were discarded due to output buffer
congestion for this PVC end-point."
::= { frPVCEndptEntry 28 }
frPVCEndptOutDECongDiscards OBJECT-TYPE
SYNTAX Counter32
UNITS "Frames"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of frames counted by
frPVCEndptOutCongDiscards with the DE bit set to
(1)."
::= { frPVCEndptEntry 29 }
frPVCEndptOutDEFrames OBJECT-TYPE
SYNTAX Counter32
UNITS "Frames"
MAX-ACCESS read-only
STATUS current
Rehbehn & Fowler Standards Track [Page 44]
RFC 2954 Frame Relay Service MIB October 2000
DESCRIPTION
"The number of frames sent by the network (egress)
with the DE bit set to (1) for this PVC end-
point."
::= { frPVCEndptEntry 30 }
frPVCEndptAtmIwfConnIndex OBJECT-TYPE
SYNTAX Integer32 (0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object contains the index value of the
FR/ATM cross-connect table entry used to link the
frame relay PVC with an ATM PVC.
Each row of the frPVCEndptTable that is not
cross-connected with an ATM PVC must return the
value zero when this object is read.
The value of this object is initialized by the
agent after the associated entries in the
frAtmIwfConnectionTable have been created.
The value of this object is reset to zero
following destruction of the associated entry in
the frAtmIwfConnectionTable"
::= { frPVCEndptEntry 31 }
--
-- Frame Relay PVC Connections
--
frPVCConnectIndexValue OBJECT-TYPE
SYNTAX INTEGER (0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object returns a hint to be used for
frPVCConnectIndex when creating entries in the
frPVCConnectTable.
The value 0 indicates that no unassigned entries
are available.
To obtain the frPVCConnectIndex value for a new
entry, the manager issues a management protocol
retrieval operation to obtain the current value of
this object. After each retrieval, the agent must
Rehbehn & Fowler Standards Track [Page 45]
RFC 2954 Frame Relay Service MIB October 2000
modify the value to the next unassigned index to
prevent assignment of the same value to multiple
management systems.
A management system should repeat the read to
obtain a new value should an attempt to create the
new row using the previously returned hint fail."
::= { frnetservObjects 4 }
frPVCConnectTable OBJECT-TYPE
SYNTAX SEQUENCE OF FrPVCConnectEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The Frame Relay PVC Connect Table is used to
model the bi-directional PVC segment flows
including: point-to-point PVCs, point-to-
multipoint PVCs, and multipoint-to-multipoint
PVCs.
This table has read-create access and is used to
associate PVC end-points together as belonging to
one connection. The frPVCConnectIndex is used to
associate all the bi-directional flows. Not all
implementations will support the capability of
creating/modifying/deleting PVCs using SNMP as a
feature of frame relay CNM service.
Once the entries in the frPVCEndptTable are
created, the following step are used to associate
the PVC end-points as belonging to one PVC
connection:
1) Obtain a unique frPVCConnectIndex
using the frPVCConnectIndexValue object.
2) Connect the PVC segment endpoints together
with the applicable frPVCConnectIndex value
obtained via frPVCConnectIndexValue. The
entries in this table are created by using
the frPVCConnectRowStatus object.
3) The agent will provide the value of the
corresponding instances of
frPVCEndptConnectIdentifier with the
frPVCConnectIndex value.
4) Set frPVCConnectAdminStatus to `active(1)' in
Rehbehn & Fowler Standards Track [Page 46]
RFC 2954 Frame Relay Service MIB October 2000
all rows for this PVC segment to turn the
PVC on.
For example, the Frame Relay PVC Connection Group
models a bi-directional, point-to-point PVC
segment as one entry in this table.
Frame Relay Frame Relay
Network Network
Low Port High Port
__________________________________
| |
_____| >> from low to high PVC flow >> |_____
| << from high to low PVC flow << |
|__________________________________|
The terms low and high are chosen to represent
numerical ordering of a PVC segment's endpoints
for representation in this table. That is, the
endpoint with the lower value of ifIndex is termed
'low', while the opposite endpoint of the segment
is termed 'high'. This terminology is to provide
directional information; for example the
frPVCConnectL2hOperStatus and
frPVCConnectH2lOperStatus as illustrated above.
If the Frame Relay Connection table is used to
model a unidirectional PVC, then one direction
(either from low to high or from high to low) has
its Operational Status equal to down.
A PVC segment is a portion of a PVC that traverses
one Frame Relay Network, and a PVC segment is
identified by its two end-points (UNI/NNI logical
port index value and DLCI index value) through one
Frame Relay Network."
::= { frnetservObjects 5 }
frPVCConnectEntry OBJECT-TYPE
SYNTAX FrPVCConnectEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in the Frame Relay PVC Connect table.
This entry is used to model a PVC segment in two
directions."
INDEX { frPVCConnectIndex,
frPVCConnectLowIfIndex,
Rehbehn & Fowler Standards Track [Page 47]
RFC 2954 Frame Relay Service MIB October 2000
frPVCConnectLowDLCIIndex,
frPVCConnectHighIfIndex,
frPVCConnectHighDLCIIndex }
::= { frPVCConnectTable 1 }
FrPVCConnectEntry ::=
SEQUENCE {
frPVCConnectIndex Integer32,
frPVCConnectLowIfIndex InterfaceIndex,
frPVCConnectLowDLCIIndex Integer32,
frPVCConnectHighIfIndex InterfaceIndex,
frPVCConnectHighDLCIIndex Integer32,
frPVCConnectAdminStatus INTEGER,
frPVCConnectL2hOperStatus INTEGER,
frPVCConnectH2lOperStatus INTEGER,
frPVCConnectL2hLastChange TimeStamp,
frPVCConnectH2lLastChange TimeStamp,
frPVCConnectRowStatus RowStatus,
frPVCConnectUserName SnmpAdminString,
frPVCConnectProviderName SnmpAdminString
}
frPVCConnectIndex OBJECT-TYPE
SYNTAX Integer32 (0..2147483647)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The value of this object is equal to the
frPVCConnectIndexValue obtained to uniquely
identify this PVC segment connection."
::= { frPVCConnectEntry 1 }
frPVCConnectLowIfIndex OBJECT-TYPE
SYNTAX InterfaceIndex
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The value of this object is equal to IF-MIB
ifIndex value of the UNI/NNI logical port for this
PVC segment. The term low implies that this PVC
segment end-point has the numerically lower
ifIndex value than the connected/associated PVC
segment end-point.
RFC 1604 permitted a zero value for this object to
identify termination at a non-frame relay
interface. However, this cross-connect table is
limited to frame relay connections. See the frame
Rehbehn & Fowler Standards Track [Page 48]
RFC 2954 Frame Relay Service MIB October 2000
relay/ATM IWF MIB [28] for the cross-connect table
used for those types of connections."
::= { frPVCConnectEntry 2 }
frPVCConnectLowDLCIIndex OBJECT-TYPE
SYNTAX Integer32 (16..4194303)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The value of this object is equal to the DLCI
value for this end-point of the PVC segment."
REFERENCE "Q.922 [25]"
::= { frPVCConnectEntry 3 }
frPVCConnectHighIfIndex OBJECT-TYPE
SYNTAX InterfaceIndex
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The value of this object is equal to IF-MIB
ifIndex value for the UNI/NNI logical port for
this PVC segment. The term high implies that this
PVC segment end-point has the numerically higher
ifIndex value than the connected/associated PVC
segment end-point."
::= { frPVCConnectEntry 4 }
frPVCConnectHighDLCIIndex OBJECT-TYPE
SYNTAX Integer32 (16..4194303)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The value of this object is equal to the egress
DLCI value for this end-point of the PVC segment."
REFERENCE "Q.922 [25]"
::= { frPVCConnectEntry 5 }
frPVCConnectAdminStatus OBJECT-TYPE
SYNTAX INTEGER {
active(1),
inactive(2),
testing(3)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The value of this object identifies the desired
administrative status of this bi-directional PVC
Rehbehn & Fowler Standards Track [Page 49]
RFC 2954 Frame Relay Service MIB October 2000
segment. The active(1) state means the PVC
segment is currently operational; the inactive(2)
state means the PVC segment is currently not
operational; the testing(3) state means the PVC
segment is currently undergoing a test. This
state is set by an administrative entity. This
value affects the PVC status indicated across the
ingress NNI/UNI of both end-points of the bi-
directional PVC segment. When a PVC segment
connection is created using this table, this
object is initially set to `inactive(2)'. After
the frPVCConnectRowStatus object is set to
`active(1)' (and the corresponding/associated
entries in the frPVCEndptTable have their
frPVCEndptRowStatus object set to `active(1)'),
the frPVCConnectAdminStatus object may be set to
`active(1)' to turn on the PVC segment
connection."
::= { frPVCConnectEntry 6 }
frPVCConnectL2hOperStatus OBJECT-TYPE
SYNTAX INTEGER {
active(1),
inactive(2),
testing(3),
unknown(4)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of this object identifies the current
operational status of the PVC segment connection
in one direction; (i.e., in the low to high
direction). This value affects the PVC status
indicated across the ingress NNI/UNI (low side) of
the PVC segment.
The values mean:
active(1) - PVC is currently operational
inactive(2) - PVC is currently not operational.
This may be because of an underlying
LMI or DS1 failure.
testing(3) - PVC is currently undergoing a test.
This may be because of an underlying
frLport or DS1 undergoing a test.
Rehbehn & Fowler Standards Track [Page 50]
RFC 2954 Frame Relay Service MIB October 2000
unknown(4) - the status of the PVC currently can
not be determined."
::= { frPVCConnectEntry 7 }
frPVCConnectH2lOperStatus OBJECT-TYPE
SYNTAX INTEGER {
active(1),
inactive(2),
testing(3),
unknown(4)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of this object identifies the current
operational status of the PVC segment connection
in one direction; (i.e., in the high to low
direction).. This value affects the PVC status
indicated across the ingress NNI/UNI (high side)
of the PVC segment.
The values mean:
active(1) - PVC is currently operational
inactive(2) - PVC is currently not operational.
This may be because of an underlying
LMI or DS1 failure.
testing(3) - PVC is currently undergoing a test.
This may be because of an underlying
frLport or DS1 undergoing a test.
unknown(4) - the status of the PVC currently can
not be determined."
::= { frPVCConnectEntry 8 }
frPVCConnectL2hLastChange OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of the Interface MIB's sysUpTime object
at the time this PVC segment entered its current
operational state in the low to high direction.
If the current state was entered prior to the last
re-initialization of the FRS agent, then this
object contains a zero value."
Rehbehn & Fowler Standards Track [Page 51]
RFC 2954 Frame Relay Service MIB October 2000
::= { frPVCConnectEntry 9 }
frPVCConnectH2lLastChange OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of the Interface MIB's sysUpTime object
at the time this PVC segment entered its current
operational state in the high to low direction.
If the current state was entered prior to the last
re-initialization of the FRS agent, then this
object contains a zero value."
::= { frPVCConnectEntry 10 }
frPVCConnectRowStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The status of this entry in the
frPVCConnectTable. This variable is used to
create new connections for the PVC end-points and
to change existing connections of the PVC end-
points. This object must be initially set to
`createAndWait(5)'. In this state, the agent
checks the parameters in the associated entries in
the frPVCEndptTable to verify that the PVC end-
points can be connected (i.e., the In parameters
for one PVC end-point are equal to the Out
parameters for the other PVC end-point). This
object can not be set to `active(1)' unless the
following columnar object exists in this row:
frPVCConnectAdminStatus. The agent also supplies
the associated value of frPVCConnectIndex for the
frPVCEndptConnectIdentifier instances. To turn on
a PVC segment connection, the
frPVCConnectAdminStatus is set to `active(1)'."
::= { frPVCConnectEntry 11 }
frPVCConnectUserName OBJECT-TYPE
SYNTAX SnmpAdminString
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This is a service user assigned textual
representation of a PVC."
::= { frPVCConnectEntry 12 }
Rehbehn & Fowler Standards Track [Page 52]
RFC 2954 Frame Relay Service MIB October 2000
frPVCConnectProviderName OBJECT-TYPE
SYNTAX SnmpAdminString
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This is a system supplied textual representation
of PVC. It is assigned by the service provider."
::= { frPVCConnectEntry 13 }
--
-- The Frame Relay Accounting
--
frAccountPVCTable OBJECT-TYPE
SYNTAX SEQUENCE OF FrAccountPVCEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The Frame Relay Accounting PVC table. This table
is used to perform accounting on a PVC segment
end-point basis."
::= { frnetservObjects 6 }
frAccountPVCEntry OBJECT-TYPE
SYNTAX FrAccountPVCEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in the Frame Relay Accounting PVC
table."
INDEX { ifIndex,
frAccountPVCDLCIIndex }
::= { frAccountPVCTable 1 }
FrAccountPVCEntry ::=
SEQUENCE {
frAccountPVCDLCIIndex Integer32,
frAccountPVCSegmentSize Integer32,
frAccountPVCInSegments Counter32,
frAccountPVCOutSegments Counter32
}
frAccountPVCDLCIIndex OBJECT-TYPE
SYNTAX Integer32 (16..4194303)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The value of this object is equal to the DLCI
Rehbehn & Fowler Standards Track [Page 53]
RFC 2954 Frame Relay Service MIB October 2000
value for this PVC segment end-point."
REFERENCE "Q.922 [25]"
::= { frAccountPVCEntry 1 }
frAccountPVCSegmentSize OBJECT-TYPE
SYNTAX Integer32
UNITS "Octets"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of this object is equal to the Segment
Size for this PVC segment end-point."
::= { frAccountPVCEntry 2 }
frAccountPVCInSegments OBJECT-TYPE
SYNTAX Counter32
UNITS "Segments"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of this object is equal to the number
of segments received by this PVC segment end-
point."
::= { frAccountPVCEntry 3 }
frAccountPVCOutSegments OBJECT-TYPE
SYNTAX Counter32
UNITS "Segments"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of this object is equal to the number
of segments sent by this PVC segment end-point."
::= { frAccountPVCEntry 4 }
--
-- Accounting on a Frame Relay Logical Port
--
frAccountLportTable OBJECT-TYPE
SYNTAX SEQUENCE OF FrAccountLportEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The Frame Relay Accounting Logical Port table.
This table is used to perform accounting on a
UNI/NNI Logical Port basis."
::= { frnetservObjects 7 }
Rehbehn & Fowler Standards Track [Page 54]
RFC 2954 Frame Relay Service MIB October 2000
frAccountLportEntry OBJECT-TYPE
SYNTAX FrAccountLportEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in the Frame Relay Accounting Logical
Port table."
INDEX { ifIndex }
::= { frAccountLportTable 1 }
FrAccountLportEntry ::=
SEQUENCE {
frAccountLportSegmentSize
Integer32,
frAccountLportInSegments
Counter32,
frAccountLportOutSegments
Counter32
}
frAccountLportSegmentSize OBJECT-TYPE
SYNTAX Integer32
UNITS "Octets"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of this object is equal to the Segment
Size for this UNI/NNI logical port."
::= { frAccountLportEntry 1 }
frAccountLportInSegments OBJECT-TYPE
SYNTAX Counter32
UNITS "Segments"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of this object is equal to the number
of segments received by this UNI/NNI logical
port."
::= { frAccountLportEntry 2 }
frAccountLportOutSegments OBJECT-TYPE
SYNTAX Counter32
UNITS "Segments"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of this object is equal to the number
Rehbehn & Fowler Standards Track [Page 55]
RFC 2954 Frame Relay Service MIB October 2000
of segments sent by this UNI/NNI logical port."
::= { frAccountLportEntry 3 }
--
-- Frame Relay Network Service Notifications
--
frPVCConnectStatusChange NOTIFICATION-TYPE
OBJECTS { frPVCConnectIndex,
frPVCConnectLowIfIndex,
frPVCConnectLowDLCIIndex,
frPVCConnectHighIfIndex,
frPVCConnectHighDLCIIndex,
frPVCConnectL2hOperStatus,
frPVCConnectH2lOperStatus,
frPVCEndptRcvdSigStatus }
STATUS deprecated
DESCRIPTION
"Refer to the description of the
frPVCConnectStatusNotif notification that has
replaced this notification. The notification is
deprecated due to the incorrect inclusion of index
values and to take advantage of the trap prefix
for automatic conversion from SMIv2 to SMIv1 by
making the one but last sub-ID a zero (i.e. the
so-called trap prefix)."
::= { frnetservTraps 1 }
frPVCConnectStatusNotif NOTIFICATION-TYPE
OBJECTS { frPVCConnectL2hOperStatus,
frPVCConnectH2lOperStatus,
frPVCEndptRcvdSigStatus }
STATUS current
DESCRIPTION
"This notification indicates that the indicated
PVC has changed state.
This notification is not sent if an FR-UNI changes
state; a linkDown or linkUp notification should be
sent instead. The first instance of
frPVCEndptRcvdSigStatus is for the endpoint with
LowIfIndex, LowDLCIIndex. The second instance of
frPVCEndptRcvdSigStatus is for the endpoint with
HighIfIndex, HighDLCIIndex"
::= { frnetservTrapsPrefix 2 }
-- Conformance Information
Rehbehn & Fowler Standards Track [Page 56]
RFC 2954 Frame Relay Service MIB October 2000
frnetservConformance OBJECT IDENTIFIER
::= { frnetservMIB 3 }
frnetservGroups OBJECT IDENTIFIER
::= { frnetservConformance 1 }
frnetservCompliances OBJECT IDENTIFIER
::= { frnetservConformance 2 }
--
-- Service (Read-only) Modules
--
frnetservCompliance2 MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"The compliance statement for SNMP entities which
have Frame Relay Network Service Interfaces.
The distinction between 'service' and 'switch' is
that a 'switch' is configured via this MIB.
Hence, the various read/write objects have write
capability. A 'service' represents a passive
monitor-only customer network management
interface. The various read/write objects are
restricted to read-only capability."
MODULE -- this module
MANDATORY-GROUPS { frnetservLportGroup2,
frnetservMgtVCSigGroup,
frnetservPVCEndptGroup,
frnetservPVCEndptGroup2,
frnetservPVCConnectGroup,
frnetservPVCConnectNamesGroup,
frnetservPVCNotifGroup2 }
GROUP frnetservAccountPVCGroup
DESCRIPTION
"This group is optional for frame relay
interfaces. It is mandatory if and only if
accounting is performed on a PVC basis this frame
relay interface."
GROUP frnetservAccountLportGroup
DESCRIPTION
"This group is optional for frame relay
interfaces. It is mandatory if and only if
accounting is performed on a logical port basis
this frame relay interface."
OBJECT frPVCEndptInMaxFrameSize
Rehbehn & Fowler Standards Track [Page 57]
RFC 2954 Frame Relay Service MIB October 2000
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."
OBJECT frPVCEndptInBc
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."
OBJECT frPVCEndptInBe
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."
OBJECT frPVCEndptInCIR
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."
OBJECT frPVCEndptOutMaxFrameSize
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."
OBJECT frPVCEndptOutBc
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."
OBJECT frPVCEndptOutBe
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."
OBJECT frPVCEndptOutCIR
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."
OBJECT frPVCEndptRowStatus
-- subset of RowStatus
SYNTAX INTEGER { active(1) }
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required, and only one of the
six enumerated values for the RowStatus textual
convention need be supported, specifically:
active(1)."
Rehbehn & Fowler Standards Track [Page 58]
RFC 2954 Frame Relay Service MIB October 2000
OBJECT frPVCConnectAdminStatus
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."
OBJECT frPVCConnectRowStatus
-- subset of RowStatus
SYNTAX INTEGER { active(1) }
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required, and only one of the
six enumerated values for the RowStatus textual
convention need be supported, specifically:
active(1)."
OBJECT frLportFragControl
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."
OBJECT frLportFragSize
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."
OBJECT frPVCConnectUserName
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."
OBJECT frPVCConnectProviderName
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."
::= { frnetservCompliances 2 }
--
-- Switch (Configuration) Compliance
--
frnetSwitchCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"The compliance statement for SNMP entities which
have Frame Relay Network Switch objects.
The distinction between 'service' and 'switch' is
that a 'switch' is configured via this MIB.
Rehbehn & Fowler Standards Track [Page 59]
RFC 2954 Frame Relay Service MIB October 2000
Hence, the various read/write objects have write
capability. A 'service' represents a passive
monitor-only customer network management
interface. The various read/write objects are
restricted to read-only capability."
MODULE -- this module
MANDATORY-GROUPS { frnetservLportGroup2,
frnetservLportAdminGroup,
frnetservMgtVCSigGroup,
frnetservMgtVCSigAdminGroup,
frnetservPVCEndptGroup,
frnetservPVCEndptGroup2,
frnetservPVCConnectGroup,
frnetservPVCConnectNamesGroup,
frnetservPVCNotifGroup2 }
GROUP frnetservAccountPVCGroup
DESCRIPTION
"This group is optional for frame relay
interfaces. It is mandatory if and only if
accounting is performed on a PVC basis this frame
relay interface."
GROUP frnetservAccountLportGroup
DESCRIPTION
"This group is optional for frame relay
interfaces. It is mandatory if and only if
accounting is performed on a logical port basis
this frame relay interface."
::= { frnetservCompliances 3 }
--
-- Historical RFC 1604 Compliance Modules
--
frnetservCompliance MODULE-COMPLIANCE
STATUS deprecated
DESCRIPTION
"The compliance statement for SNMP entities which
have Frame Relay Network Service Interfaces.
This compliance statement has been deprecated in
favor of frnetservCompliance2. The new compliance
module expands the mandatory groups to include
notification and other new objects."
MODULE -- this module
MANDATORY-GROUPS { frnetservLportGroup,
Rehbehn & Fowler Standards Track [Page 60]
RFC 2954 Frame Relay Service MIB October 2000
frnetservMgtVCSigGroup,
frnetservPVCEndptGroup,
frnetservPVCConnectGroup }
GROUP frnetservAccountPVCGroup
DESCRIPTION
"This group is optional for Frame Relay
interfaces. It is mandatory if and only if
accounting is performed on a PVC basis this Frame
Relay interface."
GROUP frnetservAccountLportGroup
DESCRIPTION
"This group is optional for Frame Relay
interfaces. It is mandatory if and only if
accounting is performed on a logical port basis
this Frame Relay interface."
OBJECT frPVCEndptInMaxFrameSize
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."
OBJECT frPVCEndptInBc
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."
OBJECT frPVCEndptInBe
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."
OBJECT frPVCEndptInCIR
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."
OBJECT frPVCEndptOutMaxFrameSize
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."
OBJECT frPVCEndptOutBc
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."
OBJECT frPVCEndptOutBe
Rehbehn & Fowler Standards Track [Page 61]
RFC 2954 Frame Relay Service MIB October 2000
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."
OBJECT frPVCEndptOutCIR
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."
OBJECT frPVCEndptRowStatus
-- subset of RowStatus
SYNTAX INTEGER { active(1) }
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required, and only one of the
six enumerated values for the RowStatus textual
convention need be supported, specifically:
active(1)."
OBJECT frPVCConnectAdminStatus
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."
OBJECT frPVCConnectRowStatus
-- subset of RowStatus
SYNTAX INTEGER { active(1) }
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required, and only one of the
six enumerated values for the RowStatus textual
convention need be supported, specifically:
active(1)."
::= { frnetservCompliances 1 }
--
-- Frame Relay Service MIB Object Groups
--
frnetservLportGroup OBJECT-GROUP
OBJECTS { frLportNumPlan, frLportContact, frLportLocation,
frLportType,
frLportAddrDLCILen, frLportVCSigProtocol,
frLportVCSigPointer }
STATUS deprecated
DESCRIPTION
"A collection of objects providing information
applicable to a Frame Relay Logical Port. This
group has been deprecated to eliminate reference
Rehbehn & Fowler Standards Track [Page 62]
RFC 2954 Frame Relay Service MIB October 2000
to the object frLportVCSigPointer.
Use the new group frnetservLportGroup2 as a
replacement for this group."
::= { frnetservGroups 1 }
frnetservMgtVCSigGroup OBJECT-GROUP
OBJECTS { frMgtVCSigProced,
frMgtVCSigUserN391,
frMgtVCSigUserN392,
frMgtVCSigUserN393,
frMgtVCSigUserT391,
frMgtVCSigNetN392,
frMgtVCSigNetN393,
frMgtVCSigNetT392,
frMgtVCSigNetnN4,
frMgtVCSigNetnT3,
frMgtVCSigUserLinkRelErrors,
frMgtVCSigUserProtErrors,
frMgtVCSigUserChanInactive,
frMgtVCSigNetLinkRelErrors,
frMgtVCSigNetProtErrors,
frMgtVCSigNetChanInactive }
STATUS current
DESCRIPTION
"A collection of objects providing information
applicable to the Local In-Channel Signaling
Procedures used for a UNI/NNI logical port."
::= { frnetservGroups 2 }
frnetservPVCEndptGroup OBJECT-GROUP
OBJECTS { frPVCConnectIndexValue,
frPVCEndptInMaxFrameSize,
frPVCEndptInBc,
frPVCEndptInBe,
frPVCEndptInCIR,
frPVCEndptOutMaxFrameSize,
frPVCEndptOutBc,
frPVCEndptOutBe,
frPVCEndptOutCIR,
frPVCEndptConnectIdentifier,
frPVCEndptRowStatus,
frPVCEndptRcvdSigStatus,
frPVCEndptInFrames,
frPVCEndptOutFrames,
frPVCEndptInDEFrames,
frPVCEndptInExcessFrames,
frPVCEndptOutExcessFrames,
Rehbehn & Fowler Standards Track [Page 63]
RFC 2954 Frame Relay Service MIB October 2000
frPVCEndptInDiscards,
frPVCEndptInOctets,
frPVCEndptOutOctets }
STATUS current
DESCRIPTION
"A collection of objects providing information
applicable to a Frame Relay PVC end-point."
::= { frnetservGroups 3 }
frnetservPVCConnectGroup OBJECT-GROUP
OBJECTS { frPVCConnectAdminStatus,
frPVCConnectL2hOperStatus,
frPVCConnectH2lOperStatus,
frPVCConnectL2hLastChange,
frPVCConnectH2lLastChange,
frPVCConnectRowStatus }
STATUS current
DESCRIPTION
"A collection of objects providing information
applicable to a Frame Relay PVC connection."
::= { frnetservGroups 4 }
frnetservAccountPVCGroup OBJECT-GROUP
OBJECTS { frAccountPVCSegmentSize,
frAccountPVCInSegments,
frAccountPVCOutSegments }
STATUS current
DESCRIPTION
"A collection of objects providing accounting
information application to a Frame Relay PVC end-
point."
::= { frnetservGroups 5 }
frnetservAccountLportGroup OBJECT-GROUP
OBJECTS { frAccountLportSegmentSize,
frAccountLportInSegments,
frAccountLportOutSegments }
STATUS current
DESCRIPTION
"A collection of objects providing accounting
information application to a Frame Relay logical
port."
::= { frnetservGroups 6 }
frnetservLportGroup2 OBJECT-GROUP
OBJECTS { frLportNumPlan,
frLportContact,
frLportLocation,
Rehbehn & Fowler Standards Track [Page 64]
RFC 2954 Frame Relay Service MIB October 2000
frLportType,
frLportAddrDLCILen,
frLportVCSigProtocol,
frLportFragControl,
frLportFragSize }
STATUS current
DESCRIPTION
"A collection of objects providing information
applicable to a Frame Relay Logical Port.
This new version of the Logical Port Group
eliminates the frLportVCSigPointer and adds
support for fragmentation."
::= { frnetservGroups 7 }
frnetservPVCEndptGroup2 OBJECT-GROUP
OBJECTS { frPVCEndptInDiscardsDESet,
frPVCEndptInFramesFECNSet,
frPVCEndptOutFramesFECNSet,
frPVCEndptInFramesBECNSet,
frPVCEndptOutFramesBECNSet,
frPVCEndptInCongDiscards,
frPVCEndptInDECongDiscards,
frPVCEndptOutCongDiscards,
frPVCEndptOutDECongDiscards,
frPVCEndptOutDEFrames,
frPVCEndptAtmIwfConnIndex }
STATUS current
DESCRIPTION
"Additions to the PVC end-point group. These
additions provide new frame counters to track
frame loss. In addition, the new FR/ATM IWF MIB
cross-connect index is included."
::= { frnetservGroups 8 }
frnetservPVCConnectNamesGroup OBJECT-GROUP
OBJECTS { frPVCConnectUserName,
frPVCConnectProviderName }
STATUS current
DESCRIPTION
"Additions to the PVC Connect Group."
::= { frnetservGroups 9 }
frnetservLportAdminGroup OBJECT-GROUP
OBJECTS { frLportDLCIIndexValue,
frLportTypeAdmin,
frLportVCSigProtocolAdmin }
STATUS current
Rehbehn & Fowler Standards Track [Page 65]
RFC 2954 Frame Relay Service MIB October 2000
DESCRIPTION
"Administrative (R/W) objects for creating a
switch logical port."
::= { frnetservGroups 10 }
frnetservMgtVCSigAdminGroup OBJECT-GROUP
OBJECTS { frMgtVCSigProcedAdmin,
frMgtVCSigUserN391Admin,
frMgtVCSigUserN392Admin,
frMgtVCSigUserN393Admin,
frMgtVCSigUserT391Admin,
frMgtVCSigNetN392Admin,
frMgtVCSigNetN393Admin,
frMgtVCSigNetT392Admin,
frMgtVCSigNetnT3Admin }
STATUS current
DESCRIPTION
"A collection of objects providing information
applicable to the Local In-Channel Signaling
Procedures used for a UNI/NNI logical port."
::= { frnetservGroups 11 }
frnetservPVCNotifGroup NOTIFICATION-GROUP
NOTIFICATIONS { frPVCConnectStatusChange }
STATUS deprecated
DESCRIPTION
"Deprecated notification group. The
frPVCConnectStatusChange notification was flawed
because it included redundant indexes and was not
properly encoded for SMIv1 conversion."
::= { frnetservGroups 12 }
frnetservPVCNotifGroup2 NOTIFICATION-GROUP
NOTIFICATIONS { frPVCConnectStatusNotif }
STATUS current
DESCRIPTION
"A collection of notifications that apply to frame
relay PVC Connections "
::= { frnetservGroups 13 }
END
Rehbehn & Fowler Standards Track [Page 66]
RFC 2954 Frame Relay Service MIB October 2000
4. Acknowledgments
This document was produced by the Frame Relay Service MIB Working
Group.
The working group thanks Bert Wijnen, David Perkins, and Bob Stewart
for their assistance in reviewing the MIB.
5. References
[1] Harrington, D., Presuhn, R. and B. Wijnen, "An Architecture for
Describing SNMP Management Frameworks", RFC 2571, April 1999.
[2] Rose, M. and K. McCloghrie, "Structure and Identification of
Management Information for TCP/IP-based Internets", STD 16, RFC
1155, May 1990.
[3] Rose, M. and K. McCloghrie, "Concise MIB Definitions", STD 16,
RFC 1212, March 1991.
[4] Rose, M., "A Convention for Defining Traps for use with the
SNMP", RFC 1215, March 1991.
[5] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose,
M. and S. Waldbusser, "Structure of Management Information
Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.
[6] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose,
M. and S. Waldbusser, "Textual Conventions for SMIv2", STD 58,
RFC 2579, April 1999.
[7] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose,
M. and S. Waldbusser, "Conformance Statements for SMIv2", STD
58, RFC 2580, April 1999.
[8] Case, J., Fedor, M., Schoffstall, M. and J. Davin, "Simple
Network Management Protocol", STD 15, RFC 1157, May 1990.
[9] Case, J., McCloghrie, K., Rose M., and S. Waldbusser,
"Introduction to Community-based SNMPv2", RFC 1901, January
1996.
[10] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Transport
Mappings for Version 2 of the Simple Network Management Protocol
(SNMPv2)", RFC 1906, January 1996.
Rehbehn & Fowler Standards Track [Page 67]
RFC 2954 Frame Relay Service MIB October 2000
[11] Case, J., Harrington D., Presuhn R. and B. Wijnen, "Message
Processing and Dispatching for the Simple Network Management
Protocol (SNMP)", RFC 2572, April 1999.
[12] Blumenthal, U. and B. Wijnen, "User-based Security Model (USM)
for version 3 of the Simple Network Management Protocol
(SNMPv3)", RFC 2574, April 1999.
[13] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Protocol
Operations for Version 2 of the Simple Network Management
Protocol (SNMPv2)", RFC 1905, January 1996.
[14] Levi, D., Meyer, P. and B. Stewart, "SNMPv3 Applications", RFC
2573, April 1999.
[15] Wijnen, B., Presuhn, R. and K. McCloghrie, "View-based Access
Control Model (VACM) for the Simple Network Management Protocol
(SNMP)", RFC 2575, April 1999.
[16] Case, J., Mundy, R., Partain, D. and B. Stewart, "Introduction
to Version 3 of the Internet-standard Network Management
Framework", RFC 2570, April 1999.
[17] ANSI T1.617-1991, American National Standard for
Telecommunications - Integrated Services Digital Network (ISDN)
- Digital Subscriber Signaling System No. 1 (DSS1) - Signaling
Specification for Frame Relay Bearer Service.
[18] Brown, C. and F. Baker, "Management Information Base for Frame
Relay DTEs", RFC 2115, September 1997.
[19] Brown, C. and A. Malis, "Multi-Protocol Interconnect over Frame
Relay", STD 55, RFC 2427, September 1998.
[20] Fowler, D, "Definitions of Managed Objects for the DS0 and DS0
Bundle Interface Types", RFC 2494, January 1999.
[21] Frame Relay Forum, "Frame Relay Fragmentation Implementation
Agreement", FRF.12, December 1997.
[22] ITU-T Recommendation Q.933,Integrated Services Digital Network
(ISDN) Digital Subscriber Signalling System No. 1 (DSS 1) -
Signalling Specifications for Frame Mode Switched and Permanent
Virtual Connection Control and Status Monitoring, December 1995
Rehbehn & Fowler Standards Track [Page 68]
RFC 2954 Frame Relay Service MIB October 2000
[23] ITU-T Recommendation X.36, Interface Between Data Terminal
Equipment (DTE) and Data Circuit-Terminating Equipment (DCE) For
Public Data Networks Providing Frame Relay Data Transmission
Service By Dedicated Circuit, April 1995
[24] Digital Equipment Corporation, et. al., "Frame Relay
Specification with Extensions Based on Proposed T1S1 Standards",
Revision 1.0, September 18, 1990
[25] ITU-T Recommendation Q.922, Integrated Services Digital Network
(ISDN) Data Link Layer Specification For Frame Mode Bearer
Services, February 1992
[26] McCloghrie, K. and F. Kastenholz, "The Interfaces Group MIB",
RFC 2863, June 2000.
[27] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
"Management Information Base for Version 2 of the Simple Network
Management Protocol (SNMPv2)", RFC 1907, January 1996.
[28] Rehbehn, K., Nicklass, O. and G. Mouradian, "Definitions of
Managed Objects for Monitoring and Controlling the Frame
Relay/ATM PVC Service Interworking Function", RFC 2955, October
2000.
[29] ITU-T Recommendation E.164/I.331, The International Public
Telecommunication Numbering Plan, May 1997
[30] ITU-T Recommendation X.121, International Numbering Plan For
Public Data Networks, October 1996
[31] Frame Relay Forum, "The Frame Relay Forum User-to-Network
Implementation Agreement (UNI)", FRF 1.2, July 2000.
6. Security Considerations
There are a number of management objects defined in this MIB that
have a MAX-ACCESS clause of read-write and/or read-create. Such
objects may be considered sensitive or vulnerable in some network
environments. The support for SET operations in a non-secure
environment without proper protection can have a negative effect on
network operations.
No managed objects in this MIB contain sensitive information.
Rehbehn & Fowler Standards Track [Page 69]
RFC 2954 Frame Relay Service MIB October 2000
SNMPv1 by itself is not a secure environment. Even if the network
itself is secure (for example by using IPSec), even then, there is no
control as to who on the secure network is allowed to access and
GET/SET (read/change/create/delete) the objects in this MIB.
It is recommended that the implementers consider the security
features as provided by the SNMPv3 framework. Specifically, the use
of the User-based Security Model RFC 2574 [12] and the View-based
Access Control Model RFC 2575 [15] is recommended.
It is then a customer/user responsibility to ensure that the SNMP
entity giving access to an instance of this MIB, is properly
configured to give access to the objects only to those principals
(users) that have legitimate rights to indeed GET or SET
(change/create/delete) them.
7. Authors' Addresses
Kenneth Rehbehn
Megisto Systems, Inc.
20251 Century Boulevard
Germantown, MD, USA 20874
Phone: (301) 515-3672
EMail: krehbehn@megisto.com
David Fowler
Syndesis Limited
28 Fulton Way
Richmond Hill, Ontario, Canada L4B 1J5
Phone: (905) 886-7818
EMail: fowler@syndesis.com
Rehbehn & Fowler Standards Track [Page 70]
RFC 2954 Frame Relay Service MIB October 2000
APPENDIX A Update Information
The changes from RFC 1604 are the following:
(1) Added the object frLportDLCIIndexValue to automatically generate
index values for new DLC rows.
(2) Add the following objects to support manager writing to objects:
Logical Port Objects
frLportTypeAdmin
frLportVCSigProtocolAdmin
VC Objects
frMgtVCSigProcedAdmin
frMgtVCSigUserN391Admin
frMgtVCSigUserN392Admin
frMgtVCSigUserN393Admin
frMgtVCSigUserT391Admin
frMgtVCSigNetN392Admin
frMgtVCSigNetN393Admin
frMgtVCSigNetT392Admin
frMgtVCSigNetnT3Admin
(3) Add objects to control fragmentation:
frLportFragControl frLportFragSize
(4) Added objects to track frames offered to network (in) and
delivered (out) for increased visibility into policing-driven
discards, congestion-driven discards, DE-bit setting, and
congestion bit setting:
frPVCEndptInDiscardsDESet
frPVCEndptInFramesFECNSet
frPVCEndptOutFramesFECNSet
frPVCEndptInFramesBECNSet
frPVCEndptOutFramesBECNSet
frPVCEndptInCongDiscards
frPVCEndptInDECongDiscards
frPVCEndptOutCongDiscards
frPVCEndptOutDECongDiscards
frPVCEndptOutDEFrames
(5) Added the PVC object frPVCEndptAtmIwfConnIndex to identify the
type of connection, frame relay or ATM IWF; and to identify the
cross-connect row of the FR/ATM IWF MIB.
Rehbehn & Fowler Standards Track [Page 71]
RFC 2954 Frame Relay Service MIB October 2000
(6) Added objects to provide printable names of the connection user
and service provider:
frPVCConnectUserName
frPVCConnectProviderName
(7) Added a new notification to correct flaws in the RFC1604 trap.
The flaws include improper OID suffix (SMIv1 compatibility
issue) and the inclusion of redundant index fields
(8) Updated compliance modules and object groups to reflect the new
objects and notification:
frnetservCompliance2 - New service-centric (read-only)
compliance module
frnetSwitchCompliance - New switch-centric (read-write)
compliance module
frnetservCompliance - Original RFC 1604 Module, now
deprecated
frnetservLportGroup - Original RFC 1604 logical port
group, now deprecated
frnetservLportGroup2 - Replacement logical port group
frnetservPVCEndptGroup2 - Extension objects with this
revision of the MIB
frnetservPVCConnectNamesGroup - New group w/ display names
for connections
frnetservLportAdminGroup - New group w/ read-write objects
for the logical port
frnetservMgtVCSigAdminGroup - New group w/ read-write objects
for the signaling protocol
frnetservPVCNotifGroup - Group deprecated to eliminate
obsolete frPVCConnectStatusChange
notification
frnetservPVCNotifGroup2 - New group added with w/
frPVCConnectStatusNotif
(9) Added UNITS and REFERENCE clauses for objects that needed the
clarification.
Rehbehn & Fowler Standards Track [Page 72]
RFC 2954 Frame Relay Service MIB October 2000
(10) Changed references to "proxy-agent" to "FRS agent" to avoid
confusion with other proxy-agent terminology.
(11) Changed objects using the DisplayString TC to use the
SnmpAdminString TC.
(12) frMgtVCSigProced - Expanded to include the u2nuser(3)
enumeration for the UNI protocol operation where the logical
port operates in the user role.
(13) DESCRIPTION text added to specify agent response when object is
not instantiated for the following objects:
frMgtVCSigUserN391
frMgtVCSigUserN393
frMgtVCSigUserT391
frMgtVCSigUserN392
frMgtVCSigNetN391
frMgtVCSigNetN393
frMgtVCSigNetT391
frMgtVCSigNetN392
frMgtVCSigNetnN4
frMgtVCSigNetnT3
frMgtVCSigUserLinkRelErrors
frMgtVCSigUserProtErrors
frMgtVCSigUserChanInactive
(14) DESCRIPTION text addressing case of logical port not performing
network-side procedures was removed from following objects:
frMgtVCSigNetLinkRelErrors
frMgtVCSigNetChanInactive
frMgtVCSigNetProtErrors
(15) frPVCEndptConnectIdentifier - Operation described for the case
of FR/ATM IWF cross-connect operation.
(16) frPVCEndptRcvdSigStatus - Added description of enumerated
values.
(17) frPVCEndptInDiscards - Clarified DESCRIPTION to state that
congestion discards are not counted by object.
(18) frPVCConnect{Low|High}IfIndex - Changed to use InterfaceIndex TC
and changed reference to MIB-II to the new IF-MIB. Removed
statement asserting that a zero value means the port is not a FR
logical port.
Rehbehn & Fowler Standards Track [Page 73]
RFC 2954 Frame Relay Service MIB October 2000
(19) frPVCConnectIndex - Added a range to the SYNTAX clause
(20) frPVCConnect{L2h|H2l}OperStatus - Added DESCRIPTION text for
each enumerated value.
(21) frAccountPVCDLCIIndex - Added a range to the SYNTAX clause
(22) frPVCCOnnectStatusChange Notification - STATUS change to
deprecated. Obsoleted to eliminate inappropriate inclusion of
index objects
(23) frPVCConnectStatusNotif Notification - Replaces
frPVCConnectStatusChange. In addition, the notification now
requires 2 instances of the frPVCEndptRcvdSigStatus object, one
for each endpoint of the connection.
(24) Guidance added to recommend ifLinkUpDownTrapEnable be set on.
(25) Behavior of the PVC status and endpoint signaling status is
clarified for the case of underlying layer failure.
(26) Overview text re-written for clarity.
(27) Clarified role of system group.
(28) Established maximum frame size of 4096 and default value of
1600.
(29) Clarified that DLC index range is restricted to valid range for
the specific length of address field used on the logical port.
(30) Figure 1 and accompanying text was removed to eliminate a
confusing "MIB stack" concept. See the section titled "Relation
to Other MIBs" for replacement text.
Rehbehn & Fowler Standards Track [Page 74]
RFC 2954 Frame Relay Service MIB October 2000
Intellectual Property Rights
The IETF takes no position regarding the validity or scope of any
intellectual property or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; neither does it represent that it
has made any effort to identify any such rights. Information on the
IETF's procedures with respect to rights in standards-track and
standards-related documentation can be found in BCP-11. Copies of
claims of rights made available for publication and any assurances of
licenses to be made available, or the result of an attempt made to
obtain a general license or permission for the use of such
proprietary rights by implementers or users of this specification can
be obtained from the IETF Secretariat.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights which may cover technology that may be required to practice
this standard. Please address the information to the IETF Executive
Director.
Rehbehn & Fowler Standards Track [Page 75]
RFC 2954 Frame Relay Service MIB October 2000
Full Copyright Statement
Copyright (C) The Internet Society (2000). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Rehbehn & Fowler Standards Track [Page 76]
Html markup produced by rfcmarkup 1.129b, available from
https://tools.ietf.org/tools/rfcmarkup/